1,196 research outputs found

    Uncovering the Global Life Cycles of the Rare Earth Elements

    Get PDF
    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    “Nanostandardization” in action: implementing standardization processes in a multidisciplinary nanoparticle-based research and development project

    Get PDF
    Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue. Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods. Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes

    Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional non-linear feedback

    Get PDF
    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Propensity score matching in estimating the effect of managerial education on academic planning behavior. Study design: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many academic settings teaching a particular topic is applied to every student enrolled in the same academic year, it is a difficult task for researchers to design a randomized control group study. This research aimed to estimate the effect of teaching management and planning on increasing academic planning behavior (APB), using propensity score matching (PSM).</p> <p>Methods</p> <p>In a cross-sectional survey utilizing a self-reported structured questionnaire on a systematic random sample of 421 students in Hanoi Medical University, one of the eight medical schools in Vietnam, this evaluation study adopted regression procedures to assess model fit, then PSM to create a matched control group in order to allow for evaluating the effect of management education.</p> <p>Results</p> <p>The study showed both direct and indirect effects of the education on behavior. After PSM to adjust for the possible confounders to balance statistically two groups - with and without management education, there is statistically a significant difference in APB between these two groups, making a net difference of 18.60% (p < .05). The estimated 18.6 percentage point increase can be translated into the practice of APB by 670 students in the population. This number of academic planners can be attributed to a high recall of important management and planning education.</p> <p>Conclusions</p> <p>The study provided theoretical as well as practical implications to guide the design of the education and evaluation of teaching.</p

    Greening China naturally

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO: A Journal of the Human Environment 40 (2011): 828-831, doi:10.1007/s13280-011-0150-8.China leads the world in afforestation, and is one of the few countries whose forested area is increasing. However, this massive ‘‘greening’’ effort has been less effective than expected; afforestation has sometimes produced unintended environmental, ecological, and socioeconomic consequences, and has failed to achieve the desired ecological benefits. Where afforestation has succeeded, the approach was tailored to local environmental conditions. Using the right plant species or species composition for the site and considering alternatives such as grassland restoration have been important success factors. To expand this success, government policy should shift from a forest-based approach to a results-based approach. In addition, long-term monitoring must be implemented to provide the data needed to develop a cost-effective, scientifically informed restoration policy.This work was supported by the Fundamental Research Funds for the Central Universities (HJ2010-3) and the CAS/ SAFEA International Partnership Program for Creative Research Teams of ‘‘Ecosystem Processes and Services’’

    Improved Measurement of the Pseudoscalar Decay Constant fDsf_{D_{s}}

    Get PDF
    We present a new determination of the Ds decay constant, f_{Ds} using 5 million continuum charm events obtained with the CLEO II detector. Our value is derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of 0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6 +/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Accelerating the Gillespie τ-Leaping Method Using Graphics Processing Units

    Get PDF
    The Gillespie τ-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the progression of the simulation with larger time steps. However, the procedure to compute the time leap τ is quite expensive. In this paper, we explore the acceleration of the τ-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large networks ( reaction channels). We have developed data structures and algorithms that take advantage of the unique hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when compared with the best conventional implementations
    corecore