40,885 research outputs found

    Incompressibility in finite nuclei and nuclear matter

    Full text link
    The incompressibility (compression modulus) K0K_{\rm 0} of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. We present a comprehensive re-analysis of recent data on GMR energies in even-even 112−124^{\rm 112-124}Sn and 106,100−116^{\rm 106,100-116}Cd and earlier data on 58 ≤\le A ≤\le 208 nuclei. The incompressibility of finite nuclei KAK_{\rm A} is expressed as a leptodermous expansion with volume, surface, isospin and Coulomb coefficients KvolK_{\rm vol}, KsurfK_{\rm surf}, KτK_\tau and KcoulK_{\rm coul}. \textit{Assuming} that the volume coefficient KvolK_{\rm vol} is identified with K0K_{\rm 0}, the KcoulK_{\rm coul} = -(5.2 ±\pm 0.7) MeV and the contribution from the curvature term Kcurv_{\rm curv}A−2/3^{\rm -2/3} in the expansion is neglected, compelling evidence is found for K0K_{\rm 0} to be in the range 250 <K0< < K_{\rm 0} < 315 MeV, the ratio of the surface and volume coefficients c=Ksurf/Kvolc = K_{\rm surf}/K_{\rm vol} to be between -2.4 and -1.6 and KτK_{\rm \tau} between -840 and -350 MeV. We show that the generally accepted value of K0K_{\rm 0} = (240 ±\pm 20) MeV can be obtained from the fits provided c∼c \sim -1, as predicted by the majority of mean-field models. However, the fits are significantly improved if cc is allowed to vary, leading to a range of K0K_{\rm 0}, extended to higher values. A self-consistent simple (toy) model has been developed, which shows that the density dependence of the surface diffuseness of a vibrating nucleus plays a major role in determination of the ratio Ksurf/Kvol_{\rm surf}/K_{\rm vol} and yields predictions consistent with our findings.Comment: 26 pages, 13 figures; corrected minor typos in line with the proof in Phys. Rev.

    Space education: Deriving benefits from industrial consortia

    Get PDF
    As the number of spacefaring nations of the world increases, so does the difficulty of competing in a global economy. The development of high technology products and services for space programs, and the economic exploitation of these technologies for national economic growth, requires professionals versed in both technical and commercial aspects of space. Meeting this requirement academically presents two challenges. On the technical side, enrollment in science and engineering is decreasing in some of the spacefaring nations. From the commerce perspective, very few colleges and universities offer specific courses in space business

    Noise of model target type thrust reversers for engine-over-the-wing applications

    Get PDF
    The results of experiments on the noise generated by V-gutter and semicylindrical target reversers with circular and short-aspect-ratio slot nozzles having diameters of about 5 cm are presented. The experiments were conducted with cold-flow jets at velocities from 190-290 m/sec. The reversers at subsonic jet velocities had a more uniform noise distribution and higher frequency than the nozzles alone. The reverser shape was shown to be more important than the nozzle shape in determining the noise characteristics. The maximum sideline pressure level varied with the sixth power of the jet velocity, and the data were correlated for angles along the sideline. An estimate of the noise level along the 152 m sideline for an engine-over-the-wing powered-lift airplane was made

    Coalescence of Liquid Drops

    Get PDF
    When two drops of radius RR touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behavior of the radius \rmn of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length 2\pi \rmn and width \Delta\ll\rmn around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. An exact two-dimensional solution for the case of inviscid surroundings [Hopper, J. Fluid Mech. 213{\bf 213}, 349 (1990)] shows that \Delta \propto \rmn^3 and \rmn \sim (t\gamma/\pi\eta)\ln [t\gamma/(\eta R)]; and thus the same is true in three dimensions. The case of coalescence with an external viscous fluid is also studied in detail both analytically and numerically. A significantly different structure is found in which the outer fluid forms a toroidal bubble of radius \Delta \propto \rmn^{3/2} at the meniscus and \rmn \sim (t\gamma/4\pi\eta) \ln [t\gamma/(\eta R)]. This basic difference is due to the presence of the outer fluid viscosity, however small. With lengths scaled by RR a full description of the asymptotic flow for \rmn(t)\ll1 involves matching of lengthscales of order \rmn^2, \rmn^{3/2}, \rmn,1andprobably, 1 and probably \rmn^{7/4}$.Comment: 36 pages, including 9 figure

    Launch system development in the Pacific Rim

    Get PDF
    Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit

    Solar cycle variations of the anomalous cosmic ray component

    Get PDF
    The intensity of the anomalous cosmic ray component, consisting of He, N, O, and Ne, has long been known to be especially sensitive to the effects of solar modulation. Following its discovery in 1972, this component dominated the quiet time flux of cosmic ray nuclei below approx. 30 MeV/nucleon during the 1972 to 1978 solar minimum, but then became essentially unobservable at 1 AU with the approach of solar maximum conditions. One recent theoretical model predicts substantial differences in the intensity of the anomalous fluxes from one solar minimum period to the next because of the reversal of the solar magnetic field. Using data from the Caltech experiments on IMP-8 and ICE (ISEE-3), the intensity of anomalous O and He at 1 AU during the years 1972 to 1985 is reported in particular. Whether the anomalous fluxes will return to their 1972-1978 levels, as predicted by spherically symmetric modulation models, or whether they will fail to return to 1 AU, as suggested by modulation models in which gradient and curvature drifts dominate are to be determined. The preliminary analysis of data from 1984 shows that the intensity of 8 to 27 MeV/nucleon O is still more than an order of magnitude below its 1972 to 1978 levels, while the intensity of 25 to 43 MeV/nucleon He is a factor of Approx. 8 below its maximum level in 1977

    Reduction and analysis of data from experiment CAI on the IMP-8 mission

    Get PDF
    The Caltech Electron/Isotope Spectrometer (EIS) on the Interplanetary Monitoring Platform 8 (IMP-8) has provided precise measurements of the energy spectra and time variations of low energy electrons (0.16 to 6 MeV), the isotopes of hydrogen and helium (approximately 2 to 40 MeV/nucleon), and the elements from lithium through oxygen (approximately 5 to 50 MeV/nucleon) in energetic particle fluxes of solar, galactic, interplanetary, and magnetospheric origin since 1973. The accomplishments that have resulted from EIS measurements during the period March 24, 1980 to December 31, 1984 are summarized

    From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models

    Full text link
    First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000 processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of Physics: Conference Series 46 (2006) 408. Extended version to be submitted to Phys. Rev.

    Noise tests of a high-aspect-ratio slot nozzle with various V-gutter target thrust reversers

    Get PDF
    The results of experiments on the noise generated by a 1.33- by 91.4 cm slot nozzle with various V-gutter reversers, and some thrust measurements are presented. The experiments were conducted with near-ambient temperature jets at nozzle pressure ratios of 1.25 to 3.0, yielding jet velocities of about 190 to 400 m/sec. At pressure ratios of 2 or less, the reversers, in addition to being noisier than the nozzle alone, also had a more uniform directional distribution and more high-frequency noise. At pressure ratios above 2, the nozzle alone generated enough shock noise that the levels were about the same as for the reversers. The maximum overall sound pressure level and the effective overall sound power level both varied with the sixth power of jet velocity over the range tested. The data were scaled up to a size suitable for reversing the wing-flap slot nozzle flow of a 45 400-kg augmentor-wing-type airplane on the ground, yielding perceived noise levels well above 95 PNdB on a 152-m sideline
    • …
    corecore