3,562 research outputs found

    Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19

    Get PDF
    Chloroquine (CQ) and hydroxychloroquine (HCQ) have been proposed as treatments for COVID-19. These drugs have been studied for many decades, primarily in the context of their use as antimalarials, where they induce oxidative stress-killing of the malarial parasite. Less appreciated, however, is evidence showing that CQ/HCQ causes systemic oxidative stress. In vitro and observational data suggest that CQ/HCQ can be repurposed as potential antiviral medications. This review focuses on the potential health concerns of CQ/HCQ induced by oxidative stress, particularly in the hyperinflammatory stage of COVID-19 disease. The pathophysiological role of oxidative stress in acute respiratory distress syndrome (ARDS) has been well-documented. Additional oxidative stress caused by CQ/HCQ during ARDS could be problematic. In vitro data showing that CQ forms a complex with free-heme that promotes lipid peroxidation of phospholipid bilayers are also relevant to COVID-19. Free-heme induced oxidative stress is implicated as a systemic activator of coagulation, which is increasingly recognized as a contributor to COVID-19 morbidity. This review will also provide a brief overview of CQ/HCQ pharmacology with an emphasis on how these drugs alter proton fluxes in subcellular organelles. CQ/HCQ-induced alterations in proton fluxes influence the type and chemical reactivity of reactive oxygen species (ROS)

    Sulfur Mustard Toxicity Following Dermal Exposure: Role of Oxidative Stress, and Antioxidant Therapy

    Get PDF
    Objective: Sulfur mustard (bis-2-(chloroethyl) sulfide) is a chemical warfare agent (military code: HD) causing extensive skin injury. The mechanisms underlying HD-induced skin damage are not fully elucidated. This review will critically evaluate the evidence showing that oxidative stress is an important factor in HD skin toxicity. Oxidative stress results when the production of reactive oxygen (ROS) and/or reactive nitrogen oxide species (RNOS) exceeds the capacity of antioxidant defense mechanisms. Methods: This review will discuss the role of oxidative stress in the pathophysiology of HD skin toxicity in both in vivo and in vitro model systems with emphasis on the limitations of the various model systems. Evidence supporting the therapeutic potential of antioxidants and antioxidant liposomes will be evaluated. Antioxidant liposomes are effective vehicles for delivering both lipophilic (incorporated into the lipid bilayers) and water-soluble (encapsulated in the aqueous inner-spaces) antioxidants to skin. The molecular mechanisms interconnecting oxidative stress to HD skin toxicity are also detailed. Results: DNA repair and inflammation, in association with oxidative stress, induce intracellular events leading to apoptosis or to a programmable form of necrosis. The free radical, nitric oxide (NO), is of considerable interest with respect to the mechanisms of HD toxicity. NO signaling pathways are important in modulating inflammation, cell death, and wound healing in skin cells. Conclusions: Potential future directions are summarized with emphasis on a systems biology approach to studying sulfur mustard toxicity to skin as well as the newly emerging area of redox proteomics

    The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Get PDF
    Background: Sulphur mustard gas, 2, 2′-dichlorodiethyl sulphide (HD), is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES), are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS) significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO) production via suppression of inducible NO synthase (iNOS) protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC) would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH) synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results: We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels). NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion: The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and supports the notion that antioxidants could play a therapeutic role in preventing mustard gas toxicity. Although NAC reduced oxidative stress in LPS stimulated macrophages treated with CEES, it did not reverse CEES-induced loss of NO production. NAC and polymyxin B were found to help prevent CEES toxicity in LPS-treated macrophages

    Inhibition of Inducible Nitric Oxide Synthase by a Mustard Gas Analog in Murine Macrophages

    Get PDF
    Background: 2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2′-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results: We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours) in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA) or dichlorofluorescin diacetate (DCFH-DA). Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity. Conclusion: CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB) signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS-stimulated macrophages could elevate oxidative stress. Since macrophage generated NO is known to play a key role in cutaneous wound healing, it is possible that this work has physiological relevance with respect to the healing of HD induced skin blisters

    Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Get PDF
    BACKGROUND: 2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. RESULTS: We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours) in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA) or dichlorofluorescin diacetate (DCFH-DA). Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity CONCLUSION: CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB) signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS-stimulated macrophages could elevate oxidative stress. Since macrophage generated NO is known to play a key role in cutaneous wound healing, it is possible that this work has physiological relevance with respect to the healing of HD induced skin blisters

    Identification of Oxidized Protein Hydrolase as a Potential Prodrug Target in Prostate Cancer

    Get PDF
    Background: Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells.Methods: Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results.Results: The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells.Conclusions: These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

    A Comparison of Pairs Figure Skaters in Repeated Jumps

    Get PDF
    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

    Two-ply channels for faster wicking in paper-based microfluidic devices

    Get PDF
    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas–Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated
    • …
    corecore