901 research outputs found

    Field theoretical approach to non-local interactions: 1d electrons and fermionic impurities

    Get PDF
    We apply a recently proposed path-integral approach to non-local bosonization to a Thirring-like system modeling non-relativistic massless particles interacting with localized fermionic impurities. We consider forward scattering processes described by symmetric potentials including interactions between charge, current, spin and spin-current densities. In the general (spin-flipping) problem we obtain an effective action for the collective modes of the model at T = 0, containing WZW-type terms. When spin-flipping processes are disregarded the structure of the action is considerably simplified, allowing us to derive exact expressions for the dispersion relations of collective modes and two point fermionic correlation functions as functionals of the potentials. Finally, as an example, we compute the momentum distribution for the case in which electrons and impurities are coupled through spin and spin-current densities only. The formulae we get suggest that our formalism could be useful in order to seek for a mechanism able to restore Fermi liquid behavior.Comment: 27 pages, Latex file, no figure

    Navigating data governance associated with real-world data for public benefit: an overview in the UK and future considerations

    Get PDF
    Real-world data encompass data primarily captured for the provision or operation of services, for example, electronic health records for direct care purposes, but which may have secondary uses for informing research or commissioning. Public benefit is potentially forfeited by the underutilisation of real-world data for secondary uses, in part due to risk aversion when faced with the prospect of navigating necessary and important data governance processes. Such processes can be perceived as complex, daunting, time-consuming and exposing organisations to risk. By providing an overview description and discussion around the role of six key legal and information governance frameworks and their role regarding responsible data access, linkage and sharing, our intention is to make data governance a less daunting prospect and reduce the perception that it is a barrier to secondary uses, thus enabling public benefit

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Towards a New Standard Model for Black Hole Accretion

    Get PDF
    We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may severely underestimate their true values.Comment: To appear in the Fifth Stromlo Symposium Proceedings special issue of ApS

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Mesoscopic scattering in the half-plane: squeezing conductance through a small hole

    Full text link
    We model the 2-probe conductance of a quantum point contact (QPC), in linear response. If the QPC is highly non-adiabatic or near to scatterers in the open reservoir regions, then the usual distinction between leads and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half-plane is more appropriate. Therefore we relate conductance to the transmission cross section for incident plane waves. This is equivalent to the usual Landauer formula using a radial partial-wave basis. We derive the result that an arbitrarily small (tunneling) QPC can reach a p-wave channel conductance of 2e^2/h when coupled to a suitable reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of its breakdown in a proposed QPC for atom waves.Comment: 8 pages, 3 figures, REVTeX. Revised version (shortened), accepted for publication in PR

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Жанр эссе полемического характера в публицистическом дискурсе А. Андреева

    Get PDF
    The accuracy of synoptic-based weather forecasting deteriorates rapidly after five days and is not routinely available beyond 10 days. Conversely, climate forecasts are generally not feasible for periods of less than 3 months, resulting in a weather-climate gap. The tropical atmospheric phenomenon known as the Madden-Julian Oscillation (MJO) has a return interval of 30 to 80 days that might partly fill this gap. Our near-global analysis demonstrates that the MJO is a significant phenomenon that can influence daily rainfall patterns, even at higher latitudes, via teleconnections with broadscale mean sea level pressure (MSLP) patterns. These weather states provide a mechanistic basis for an MJO-based forecasting capacity that bridges the weather-climate divide. Knowledge of these tropical and extra-tropical MJO-associated weather states can significantly improve the tactical management of climate-sensitive systems such as agriculture
    corecore