10,508 research outputs found

    Local variation in productivity by soil family within one major habitat type in western Montana

    Get PDF

    On Minimal Triangle-Free 5-Chromatic Graphs

    Get PDF

    Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration

    Full text link
    Quasi-chemical theory is utilized to analyze the roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl^-, Br^-, and I^-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The quasi-chemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. The spatial partitioning allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy

    Ab initio investigation of intermolecular interactions in solid benzene

    Full text link
    A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy

    T Cells Use Rafts for Survival

    Get PDF
    T cell homeostasis must be tightly controlled. In this issue of Immunity, Cho et al. (2010) describe results that begin to define the roles of the T cell receptor, self-peptide-MHC ligands, cytokines, and membrane rafts in this dynamic process

    Book Reviews

    Get PDF
    Reviews of the following books: Lobstering and The Maine Coast by Kenneth R. Martin and Nathan R. Lipfert; Beothuk Bark Canoes: An Analysis and Comparative Study by Ingeborg C.L. Marshall; Records of Meduncook Plantation and Friendship Maine, 1763-1899 edited by Melville B. Cook

    Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment and Rotation

    Full text link
    Observations reveal concentrations of molecular line emission on the sky, called ``clumps,'' in dense, star-forming molecular clouds. These clumps are believed to be the eventual sites of star formation. We study the three-dimensional analogs of clumps using a set of self-consistent, time-dependent numerical models of molecular clouds. The models follow the decay of initially supersonic turbulence in an isothermal, self-gravitating, magnetized fluid. We find the following. (1) Clumps are intrinsically triaxial. This explains the observed deficit of clumps with a projected axis ratio near unity, and the apparent prolateness of clumps. (2) Simulated clump axes are not strongly aligned with the mean magnetic field within clumps, nor with the large-scale mean fields. This is in agreement with observations. (3) The clump mass spectrum has a high-mass slope that is consistent with the Salpeter value. There is a low-mass break in the slope at \sim 0.5 \msun, although this may depend on model parameters including numerical resolution. (4) The typical specific spin angular momentum of clumps is 4×1022cm2s14 \times 10^{22} {\rm cm^2 s^{-1}}. This is larger than the median specific angular momentum of binary stars. Scaling arguments suggest that higher resolution simulations may soon be able to resolve the scales at which the angular momentum of binary stars is determined.Comment: 14 pages, 13 figures, to appear in 2003 July 20 Ap
    corecore