31,897 research outputs found

    Fluid sample collector Patent

    Get PDF
    Design and development of fluid sample collecto

    Thermoelectric metal comparator determines composition of alloys and metals

    Get PDF
    Emf comparing device nondestructively inspects metals and alloys for conformance to a chemical specification. It uses the Seebeck effect to measure the difference in emf produced by the junction of a hot probe and the junction of a cold contact on the surface of an unknown metal

    Microbial diversity in the thermal springs within Hot Springs National Park

    Get PDF
    The thermal water systems of Hot Springs National Park (HSNP) in Hot Springs, Arkansas exist in relative isolation from other North American thermal systems. The HSNP waters could therefore serve as a unique center of thermophilic microbial biodiversity. However, these springs remain largely unexplored using culture-independent next generation sequencing techniques to classify species of thermophilic organisms. Additionally, HSNP has been the focus of anthropogenic development, capping and diverting the springs for use in recreational bathhouse facilities. Human modification of these springs may have impacted the structure of these bacterial communities compared to springs left in a relative natural state. The goal of this study was to compare the community structure in two capped springs and two uncapped springs in HSNP, as well as broadly survey the microbial diversity of the springs. We used Illumina 16S rRNA sequencing of water samples from each spring, the QIIME workflow for sequence analysis, and generated measures of genera and phyla richness, diversity, and evenness. In total, over 700 genera were detected and most individual samples had more than 100 genera. There were also several uncharacterized sequences that could not be placed in known taxa, indicating the sampled springs contain undescribed bacteria. There was great variation both between sites and within samples, so no significant differences were detected in community structure between sites. Our results suggest that these springs, regardless of their human modification, contain a considerable amount of biodiversity, some of it potentially unique to the study site

    Analysis of unbounded operators and random motion

    Full text link
    We study infinite weighted graphs with view to \textquotedblleft limits at infinity,\textquotedblright or boundaries at infinity. Examples of such weighted graphs arise in infinite (in practice, that means \textquotedblleft very\textquotedblright large) networks of resistors, or in statistical mechanics models for classical or quantum systems. But more generally our analysis includes reproducing kernel Hilbert spaces and associated operators on them. If XX is some infinite set of vertices or nodes, in applications the essential ingredient going into the definition is a reproducing kernel Hilbert space; it measures the differences of functions on XX evaluated on pairs of points in XX. And the Hilbert norm-squared in H(X)\mathcal{H}(X) will represent a suitable measure of energy. Associated unbounded operators will define a notion or dissipation, it can be a graph Laplacian, or a more abstract unbounded Hermitian operator defined from the reproducing kernel Hilbert space under study. We prove that there are two closed subspaces in reproducing kernel Hilbert space H(X)\mathcal{H}(X) which measure quantitative notions of limits at infinity in XX, one generalizes finite-energy harmonic functions in H(X)\mathcal{H}(X), and the other a deficiency index of a natural operator in H(X)\mathcal{H}(X) associated directly with the diffusion. We establish these results in the abstract, and we offer examples and applications. Our results are related to, but different from, potential theoretic notions of \textquotedblleft boundaries\textquotedblright in more standard random walk models. Comparisons are made.Comment: 38 pages, 4 tables, 3 figure

    An Improved Prediction Method for Noise Generated by Conventional Profile Coaxial Jets

    Get PDF
    A semiempirical model for predicting the noise generated by conventional velocity profile jets exhausting from coaxial nozzles is presented and compared with small scale static and simulated flight data. Improvements to the basic circular jet noise prediction are developed which improve the accuracy, especially at high jet velocity and near the jet axis

    Phase-space correlations of chaotic eigenstates

    Full text link
    It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.Comment: Published version with minor corrections to version

    Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1

    Get PDF
    Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM
    • …
    corecore