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Abstract

The thermal water systems of Hot Springs National
Park (HSNP) in Hot Springs, Arkansas exist in relative
isolation from other North American thermal systems.
The HSNP waters could therefore serve as a unique
center of thermophilic microbial biodiversity. However,
these springs remain largely unexplored using culture-
independent next generation sequencing techniques to
classify species of thermophilic organisms.
Additionally, HSNP has been the focus of
anthropogenic development, capping and diverting the
springs for use in recreational bathhouse facilities.
Human modification of these springs may have
impacted the structure of these bacterial communities
compared to springs left in a relative natural state. The
goal of this study was to compare the community
structure in two capped springs and two uncapped
springs in HSNP, as well as broadly survey the
microbial diversity of the springs. We used Illumina 16S
rRNA sequencing of water samples from each spring,
the QIIME workflow for sequence analysis, and
generated measures of genera and phyla richness,
diversity, and evenness. In total, over 700 genera were
detected and most individual samples had more than 100
genera. There were also several uncharacterized
sequences that could not be placed in known taxa,
indicating the sampled springs contain undescribed
bacteria. There was great variation both between sites
and within samples, so no significant differences were
detected in community structure between sites. Our
results suggest that these springs, regardless of their
human modification, contain a considerable amount of
biodiversity, some of it potentially unique to the study
site.

Key Words: Hot Springs National Park, Microbial
Diversity, Next Generation Sequencing, Thermophiles

Introduction

Constraints governing the biochemical processes at

work in thermophilic bacteria have yielded discoveries
with far-reaching implications, ranging from
biogeochemistry to biotechnology (Leis et al. 2015;
Shrestha et al. 2018; Undsworth and Koutsopoulos
2007). Evolving in relative isolation from other
extremophiles provides opportunities for unique
communities to develop, resulting in community
structures that vary tremendously, even among similar
study sites (Amin et al. 2017). Investigation of
individual microbes in extreme environments has
yielded the discovery of thermostable enzymes critical
to biotechnological advances such as PCR (Brock
1969), treatment of industrial waste (Shrestha et al.
2018), and industrial chemistry (Leis et al.2015).

The in-depth characterization these communities
warrant cannot be accomplished with culture-dependent
methods alone, as it has been hypothesized that less than
1% of environmental bacteria are likely to be cultured
in laboratory settings (Staley and Konopka 1985). Given
the stringent growth requirements for extremophiles,
and the observation that some thermophiles appear to be
co-culture dependent (Stewart 2012), the proportion of
culturable thermophiles is likely smaller. The
limitations of culture-dependent characterization render
these methods insufficient for improving understanding
of these microbial communities. However, with the
increasing accessibility of modern high-throughput
sequencing techniques, researchers have improved
understanding of high-temperature microbial
community structure, allowing the development of
metagenomic libraries specific to thermophiles (Mirete
et al. 2016). In spite of these advances, many isolated
regions of thermophilic activity remain unexplored,
limiting knowledge of prospective biodiversity.

Hot Springs National Park is an isolated
thermophilic environment located in the Ouachita
Mountains of Arkansas, and is the only hot water
thermal spring complex with average water
temperatures above 50°C in the central U.S. (NOAA
NCEI 2018). Given its geographic isolation,
opportunities for biological exchange with other North
American thermophile communities are likely very
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limited. While the hot water springs have been used for
human recreation for thousands of years, intense
development of the area began in the 1830s (Hanor
1980). Modern development has included heavy
landscaping and the capping and diversion of the springs
to recreational facilities, such as bath houses. Today,
only ten spring complexes are uncapped and open to the
environment (Yeatts 2006). In the open springs, a
presumably more complex ecological community exists
with thermophilic algae (Smith 2010) and crustaceans
(Meg O’Connor, personal correspondence). By contrast,
the capped springs, which lack a light source, are likely
to contain a simpler community consisting mostly of
chemotrophs (probably chemolithotrophs). Our goal in
this study was to characterize the microbial
communities in both capped and uncapped hot springs
within Hot Springs National Park. We hypothesized that
the microbial diversity would be lower and the
community structure distinctive in capped springs
compared to the uncapped springs. While some novel
thermophiles have been identified in this system via
traditional laboratory culture and 16S rRNA sequencing
at specific sites within the park (Marks et al. 2012), the
community structures of these different springs have not
been broadly compared with culture-independent
methods. Therefore, our study may provide insight into
the biodiversity in this isolated system, detect human
impacts on the communities, and assess the
conservation value of the capped and uncapped springs.

Materials and Methods

Sampling Sites
All sampling sites were located within Hot Springs

National Park (HSNP) (34°30’53’’ N, 93°03’12’’ W).
While the park contains 43 thermal springs located in a
5.6 Ha section of the park (Yeatts, 2006), all sampling
sites were located on Bath House Row, where over the
last 150 years, 33 of the thermal springs have been
highly modified by human activity. In this system, rain
water seeps slowly into cracks in Hot Springs rock
formations, where it is heated before being forced back
to the surface. Temperatures of the springs average
61.4°C. The rock in the area is largely shale, chert,
novaculite, and sandstone, of which only shale impedes
the ground water movement in the area (Yeatts 2006).

Sites within HSNP were sampled between 10:30-
12:00am CST on 26 Sept 2017. Of the 43 individual
springs where heated water rises to the surface, four
individual springs were selected for sampling. Of these
four springs, two sites were capped springs, where
bathhouse buildings were constructed on top of the

individual flows and previously used for recreation and
tourism. The two capped sites, the Fordyce Bath House
Spring (F) and the Hale Bath House Spring (H), have
been decommissioned for public use. The remaining
sites, the Lamar Display Spring (L) and the Tunnel
Display Spring (T), are open-air springs on display to
the public.

Sample Collection and Preparation
Duplicate water samples from each site were

collected aseptically at the surface level using sterile 50
mL conical tubes and stored immediately on ice in
transit to the laboratory for further processing. Samples
were processed within four hours of collection for DNA
extraction. All water samples were filtered via a
Millipore® filtration apparatus containing a filter with a
pore size of 0.45 μm. DNA extraction was performed 
using the Zymo Research® ZR Fecal DNA Miniprep
Kit (Catalog No: D6010) according to manufacturer
specifications. Purified product was quantified by
spectrophotometry and stored at -80°C until preparation
for Illumina Sequencing.

Sequencing and Analysis
PCR-amplification targeted variable regions V3 &

V4 of the 16S ribosomal subunit and amplified from
515bp to 806 bp within the gene using the Illumina
515FB/806RB primer pair (Caporaso et al. 2011; Parada
et al. 2016) for a total of 291bp. This PCR-
amplification, as well as barcoding and high-throughput
sequencing on an Illumina platform, was performed by
Wright Labs (Huntingdon, PA 16652) using primers
utilized in previous studies. All sequence data was
analyzed with access to computing cluster located at
Juniata College using Quantitative Insights Into
Microbial Ecology (QIIME version 1.9.1). Before using
this program, sequences were trimmed to 253bp and
discarded if sequence overlap was less than 200 bp. The
USEARCH version 7 algorithm filtered sequences with
an expected error rate of <1%, and with a minimum of
5,000 reads required for retention. This resulted in a
total of 646, 651 quality reads which were then analyzed
using QIIME program (v1.9.1). Operational taxonomic
units (OTU’s) were selected using the open reference
OTU UCLUST algorithm (Edgar 2010), and were
defined by 97% sequence similarity. Taxonomy was
assigned using the RDP Classifier and Greengenes 16S
rRNA gene database (DeSantis et al. 2006, 13-8
release).

For alpha diversity measurements, we counted the
number of genera present in each sample within each
site. To determine the general similarity between sites,
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we calculated genera richness (S), the Shannon diversity
index (H’), and evenness (J’). To examine general
community structure, we performed a nonmetric
multidimensional scaling (NMDS, Kruskal 1964)
analysis and plotted the results on a two-dimensional
graph. We utilized the Bray-Curtis method to measure
beta diversity, or dissimilarity between samples.

Results

We detected 646,651 quality-reads for the eight
samples after removal of low-quality and chimeric
sequences (Table 1). These data resulted in a total of 46
bacterial phyla and 3 archaeal phyla across all sampling
sites (Table 2). Only one phylum of Archaea
(Crenarchaeota) and 12 phyla of Bacteria were found
within all of the sites sampled. Although there were
some phyla found only in a single sampling site, there
was no indication of groups exclusively present in one
type of sample (i.e. capped or uncapped). The 12 phyla
of bacteria found in all sites, in order of abundance were
Proteobacteria, Actinobacteria, Acidobacteria,
Firmicutes, Cyanobacteria, Bacteriodetes,
Planktomycetes, Chloroflexi, Verrucomicrobia,
Nitrospirae, Chlorobi, and Elusimicrobia. The
proportion of unassigned taxa in our samples ranged
from 0.5 – 19.9% of sequences, indicating a
considerable amount of new unknown biodiversity. We
detected a total of 706 genera with OTU’s >97%
similarity to previously described microbes (see
supplemental data, Moran 2018).

Table 1. Number of reads returned from next generation
sequencing of 16S rRNA variable regions V3 & V4 after
quality filtering. L = Lamar Display Spring, F = Fordyce
Bathhouse, T = Tunnel Spring, and H = Hale Bathhouse.

NGS Reads within HSNP

Sample Number of reads

H1 136748

H2 22666

F1 206444

F2 18165

L1 49789

L2 86089

T1 37401

T2 89349

Total 646651

There was high variation in genus richness between
sites and between samples within sites (Table 3). With
the exception of one sample (F2), all samples contained
over 100 genera, while some had over 400 genera
represented. H’ and J’ values were relatively high in
most samples, indicating a general lack of dominance by
one particular group. However, the various genera
within the Proteobacteria tended to make up over 50%
of sequence abundance. The NMDS results at the genus
level showed clustering of sites L, H, and T, while both
F samples were dramatically different in community
structure. (Stress = 0.12, Fig. 1).

When examined at the site level, each location had
over 250 genera and each had unique genera not found
in other springs (Table 4). However, the proportion of
unique genera varied greatly from 4% (Fordyce) to 34%
(Hale).

Discussion

Based on our assessment of the four thermal springs
in HSNP, the area contains considerable biodiversity.
Our sequence data indicates that no single genus of
bacteria or archaea are dominant within the springs, but
instead a variety of genera thrive in these habitats,
ranging from 90 to over 400 across sample sites. The
phylum Proteobacteria, however, did typically comprise
~50% of sequences within a given sample. These
biodiversity results generally agree with other studies
that have examined thermal communities using the 16S
rRNA sequence method (Amin et al. 2017; Chan et al.
2015; De León et al. 2013; Vick et al. 2010).

Our results contrast with a previous study of the
Hale Bathhouse in HSNP, which found high abundance
of the phylum Nitrospira (Bacteria) and
Thaumarchaeota (Archaea, Marks et al. 2012). In our
samples, however, Nitrospira was relatively rare (less
than 2%) and Thaumarchaeota was absent. However,
this study examined biofilms on submerged glass slides,
while our study sampled the water column. This
difference shows that thermophilic microbial
communities may vary greatly within sites, depending
on the location and method of collection. It should be
noted that the number of reads and community
structures in our study vary dramatically, as much as
ten-fold, across replicates of the same site, indicating
possible sampling error (Table 1). For example, in the
low flow spring of Fordyce Bathhouse, one sample (F2)
visibly contained more sediment, which may have
changed the biodiversity profile for that sample (Dalu et
al. 2017; Smolders et al. 2003) and may explain the
large difference in community structure seen in the
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Table 2. Phyla diversity and proportional representation based on 16S rRNA sequencing data across four sampled sites
in Hot Springs National Park. L = Lamar Display Spring, F = Fordyce Bathhouse, T = Tunnel Spring, and H = Hale
Bathhouse.

Phylum L1 L2 T1 T2 F1 F2 H1 H2

Unassigned;Other 0.0249 0.0192 0.0053 0.0080 0.1987 0.0147 0.0297 0.0494

Kingdom Archaea

Crenarchaeota 0.0010 0.0011 0.0121 0.0074 0.3460 0.0087 0.0042 0.0066

Euryarchaeota < 0.0001 0.0001 0.0022 0.0031 0.0050 0.0003 0.0002 NA

Parvarchaeota NA < 0.0001 NA < 0.0001 NA NA 0.0004 NA

Kingdom Bacteria

Other NA NA NA NA < 0.0001 NA NA NA

k__Bacteria;p__ NA NA 0.0010 0.0011 0.0002 NA 0.0019 0.0026

AD3 NA < 0.0001 NA 0.0106 NA NA 0.0515 0.0014

Acidobacteria 0.0613 0.0399 0.0223 0.2349 0.0543 0.0216 0.1436 0.0498

tinobacteria 0.0147 0.0301 0.1652 0.1624 0.0442 0.0236 0.1053 0.1088

Aquificae NA NA 0.0003 NA NA NA NA NA

Armatimonadetes 0.0019 0.0022 0.0006 0.0071 0.0026 NA 0.0152 0.0114

BHI80-139 NA NA NA < 0.0001 NA NA 0.0002 NA

BRC1 0.0007 < 0.0001 NA 0.0002 NA NA 0.0017 NA

Bacteroidetes 0.0115 0.0306 0.0479 0.0160 0.0036 0.1497 0.0168 0.0321

Chlamydiae 0.0035 0.0015 0.0005 < 0.0001 < 0.0001 NA 0.0007 < 0.0001

Chlorobi 0.0031 0.0058 0.0003 0.0007 0.0110 0.0012 0.0024 0.0101

Chloroflexi 0.0058 0.0417 0.0014 0.0865 0.0445 0.0012 0.0695 0.0334

Cyanobacteria 0.0688 0.1764 0.0188 0.0058 0.0012 0.0171 0.0105 0.0230

Deferribacteres NA NA NA NA NA NA 0.0001 0.0003

Elusimicrobia 0.0002 < 0.0001 0.0041 0.0023 0.0017 0.0052 0.0007 0.0008

FBP NA 0.0002 NA NA NA NA NA NA

FCPU426 < 0.0001 < 0.0001 NA NA NA NA < 0.0001 0.0037

Fibrobacteres < 0.0001 0.0002 NA 0.0002 NA NA < 0.0001 NA

Firmicutes 0.0160 0.0101 0.0309 0.0113 0.0059 0.2833 0.0296 0.0397

GAL15 < 0.0001 < 0.0001 NA 0.0001 0.0211 0.0701 0.0003 NA

GN02 NA 0.0001 NA < 0.0001 NA NA NA NA

Gemmatimonadetes 0.0044 0.0028 0.0001 0.0090 < 0.0001 NA 0.0038 0.0004

MVP-21 NA NA NA 0.0001 NA NA 0.0002 NA

NC10 NA NA NA NA 0.0152 NA 0.0002 < 0.0001

NKB19 0.0001 NA NA < 0.0001 NA NA < 0.0001 NA

Nitrospirae 0.0009 0.0004 0.0012 0.0258 0.1083 0.0197 0.0052 0.0153

OD1 < 0.0001 0.0001 NA NA NA NA < 0.0001 NA

OP1 0.0001 < 0.0001 0.0004 NA 0.0413 0.0076 0.0014 NA

OP11 NA NA NA NA NA NA < 0.0001 NA
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Table 2. continued.

OP3 0.0011 < 0.0001 NA < 0.0001 0.0005 NA 0.0005 0.0006

OP8 NA NA NA NA NA NA < 0.0001 NA

Planctomycetes 0.0283 0.0307 0.0328 0.0653 0.0047 < 0.0001 0.1123 0.0285

Proteobacteria 0.7331 0.5875 0.6471 0.2858 0.0815 0.3686 0.2287 0.5041

SBR1093 < 0.0001 0.0002 NA NA 0.0073 NA 0.0002 NA

Spirochaetes 0.0013 0.0059 NA NA NA NA 0.0052 0.0118

TM6 0.0041 0.0020 NA < 0.0001 NA NA < 0.0001 0.0003

TM7 NA NA NA 0.0001 NA NA 0.0011 NA

Tenericutes NA NA NA < 0.0001 NA 0.0004 < 0.0001 NA

Thermotogae NA NA NA NA NA NA < 0.0001 0.0004

Verrucomicrobia 0.0095 0.0081 0.0029 0.0523 0.0001 0.0069 0.1247 0.0146

WPS-2 0.0022 0.0006 0.0018 0.0006 0.0005 NA 0.0167 0.0022

WS2 NA NA NA 0.0006 NA NA 0.0002 NA

WS3 0.0001 NA NA 0.0022 NA NA 0.0003 NA

WWE1 NA NA NA NA 0.0003 NA NA NA

Thermi 0.0013 0.0022 0.0007 < 0.0001 < 0.0001 NA 0.0147 0.0488

NMDS results. Testing both the water column and the
sediment in each spring may help elucidate the impact
of substrate and microhabitats on microbial biodiversity
within the springs. With the exception of Fordyce
Bathhouse spring however, community structure is
relatively similar between sites.

The community structure of these thermophilic
environments is complex, perhaps reflecting the
diversity of energy sources present in these waters,
which includes iron, sulfur compounds, ammonia, and
methane (Marks et al. 2012). Some of our identified

Table 3. Genera richness (S), Shannon diversity index
(H’), and evenness index (J’) for each thermophilic
sample. L = Lamar Display Spring, F = Fordyce
Bathhouse, T = Tunnel Spring, and H = Hale Bathhouse.

Sample S H' J'

L1 345 3.20 0.55

L2 420 3.94 0.65

F1 240 2.59 0.47

F2 90 3.61 0.80

T1 134 2.98 0.61

T2 420 4.18 0.69

H1 466 4.46 0.73

H2 224 4.05 0.75

phyla contain species that are known to use
chemoautotrophic metabolism, including Crenarchaeota
(sulfur, Woese 1984), Nitrospira (ammonia, Marks et al.
2012), Crenarchaeota (iron, Kozubal et al. 2008), and a
variety of methane metabolizing Archaea (Evans et al.
2015; Ozuolmez et al. 2015; Yang et al. 2017). We find
it interesting that even the capped springs had high
biodiversity, showing that complex bacterial
communities are surviving without external energy
sources (i.e., light). Therefore, it appears that a large
amount of the biodiversity has been maintained in these
sites, even with the high degree of human modification.

Figure 1. Results of the NMDS analysis showing the similarity
between samples. L = Lamar Display Spring, F = Fordyce
Bathhouse, T = Tunnel Spring, and H = Hale Bathhouse.
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Table 4. Number of unique genera, total genera, and
proportional unique at each site. L = Lamar Display
Spring, F = Fordyce Bathhouse, T = Tunnel Spring, and
H = Hale Bathhouse

L H F T

Unique
Genera

89 171 18 42

Total
Genera

468 504 452 272

Proportion
Unique

0.19 0.34 0.04 0.15

This study, although limited to a small subset of
springs in HSNP, found a high diversity of thermophilic
microbes. It is likely that further sampling of the spring
system would yield additional genera. We recommend a
thorough sampling of microhabitats within each spring
(e.g., substrate, water column, and different distances
from spring source) to fully document the microbe
biodiversity. These springs have been recognized for
decades for their unique geological and cultural value,
while their biological value has been less well-
understood. Our analysis shows that the microbial
biodiversity remains rich in HSNP despite continual
anthropogenic modification, and should remain a focus
of ongoing conservation efforts, as this diversity could
be of considerable scientific value.
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