30 research outputs found

    Small divisors and large multipliers

    Get PDF
    We study germs of singular holomorphic vector fields at the origin of Cn\Bbb C^n of which the linear part is 1-resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some "sectorial domains" which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms. We show that the Gevrey ordrer of the latter is linked to the diophantine type of the small divisors.Comment: 22 pages, to appear in Annales de l'Institut Fourie

    A generalized frequency detuning method for multidegree-of-freedom oscillators with nonlinear stiffness

    Get PDF
    In this paper, we derive a frequency detuning method for multi-degree-of-freedom oscillators with nonlinear stiffness. This approach includes a matrix of detuning parameters, which are used to model the amplitude dependent variation in resonant frequencies for the system. As a result, we compare three different approximations for modeling the affect of the nonlinear stiffness on the linearized frequency of the system. In each case, the response of the primary resonances can be captured with the same level of accuracy. However, harmonic and subharmonic responses away from the primary response are captured with significant differences in accuracy. The detuning analysis is carried out using a normal form technique, and the analytical results are compared with numerical simulations of the response. Two examples are considered, the second of which is a two degree-of-freedom oscillator with cubic stiffnesses

    About Linearization of Infinite-Dimensional Hamiltonian Systems

    No full text
    This article is concerned with analytic Hamiltonian dynamical systems in infinite dimension in a neighborhood of an elliptic fixed point. Given a quadratic Hamiltonian, we consider the set of its analytic higher order perturbations. We first define the subset of elements which are formally symplectically conjugated to a (formal) Birkhoff normal form. We prove that if the quadratic Hamiltonian satisfies a Diophantine-like condition and if such a perturbation is formally symplectically conjugated to the quadratic Hamiltonian, then it is also analytically symplectically conjugated to it. Of course what is an analytic symplectic change of variables depends strongly on the choice of the phase space. Here we work on periodic functions with Gevrey regularity
    corecore