18 research outputs found

    Secondary neurons are arrested in an immature state by formation of epithelial vesicles during neurogenesis of the spider Cupiennius salei

    Get PDF
    BACKGROUND: In the spider Cupiennius salei about 30 groups of neural precursors are generated per hemi-segment during early neurogenesis. Analysis of the ventral neuromeres after invagination of the primary neural precursor groups revealed that secondary neural precursors arise during late embryogenesis that partially do not differentiate until larval stages. RESULTS: In contrast to the primary groups, the secondary invaginating cells do not detach from each other after invagination but maintain their epithelial character and form so-called epithelial vesicles. As revealed by dye labeling, secondary neural precursors within epithelial vesicles do not show any morphological features of differentiation indicating that the formation of epithelial vesicles after invagination leads to a delay in the differentiation of the corresponding neural precursors. About half of the secondary neural precursor groups do not dissociate from each other during embryogenesis indicating that they provide neural precursors for larval and adult stages. CONCLUSIONS: Secondary neural precursors are arrested in an immature state by formation of epithelial vesicles. This mechanism facilitates the production of larval neural precursors during embryogenesis. I discuss the evolutionary changes that have occured during neural precursor formation in the arthropod group and present a model for the basal mode of neurogenesis

    An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian.

    Get PDF
    BACKGROUND: An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors. The activity of genes of the achaete-scute (ac-sc) family endows cells with neural potential. An essential, conserved characteristic of proneural genes is their ability to restrict their own activity to single or a small number of progenitor cells from their initially broad domains of expression. This is achieved through a process called lateral inhibition. A regulatory element, the sensory organ precursor enhancer (SOPE), is required for this process. First identified in Drosophila, the SOPE contains discrete binding sites for four regulatory factors. The SOPE of the Drosophila asense gene is situated in the 5' UTR. RESULTS: Through a manual comparison of consensus binding site sequences we have been able to identify a SOPE in UTR sequences of asense-like genes in species belonging to all four arthropod groups (Crustacea, Myriapoda, Chelicerata and Insecta). The SOPEs of the spider Cupiennius salei and the insect Tribolium castaneum are shown to be functional in transgenic Drosophila. This would place the origin of this regulatory sequence as far back as the last common ancestor of the Arthropoda, that is, in the Cambrian, 550 million years ago. CONCLUSIONS: The SOPE is not detectable by inter-specific sequence comparison, raising the possibility that other ancient regulatory modules in invertebrates might have escaped detection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The role of Notch signalling and numb function in mechanosensory organ formation in the spider Cupiennius salei

    Get PDF
    AbstractIn the spider Cupiennius salei the mechanosensory organs of the legs are generated from epithelial sensory precursor groups which are specified by elevated levels of the achaete–scute homologues CsASH1 and CsASH2. Neural precursors delaminate from the groups and occupy positions basal and proximal to the accessory cells which remain in the epithelium. Here we analyse the role of Notch signalling and numb function in the development of the mechanosensory organs of the spider. We show that Notch signalling is required for several processes: the selection of the sensory precursor groups, the maintenance of undifferentiated sensory precursors, the binary cell fate decision between accessory and neural fate and the differentiation of sensory neurons. Our data suggest that Numb antagonises Notch signalling in the neural precursors, which results in activation of the neural cell fate determinant Prospero and delamination of the neural precursors from the epithelium. Prospero is expressed de novo in sensory neural precursors and we assume that the expression of the gene is regulated by the Notch to Numb ratio within the sensory precursors. Interestingly, the spider numb RNAi phenotype resembles the numb/numblike loss of function phenotypes in the mammalian nervous system, indicating that the interaction between Notch signalling and Numb might play a similar role in both systems

    Evolutionary development and morphological modifications of the brain: an interview with Angelika Stollewerk

    No full text
    Abstract Angelika Stollewerk is a Reader at Queen Mary University of London, where her lab uses a diverse range of species to study the evolution of the arthropod nervous system. Angelika spoke to us about social spiders, the future of evo-devo, and open peer review
    corecore