122 research outputs found
Plume effects on the flow around a blunted cone at hypersonic speeds
Tests at M = 8.2 show that a simulated rocket plume at the base of a blunted cone can cause large areas of separated flow, with dramatic effects on the heat transfer rate distribution. The plume was simulated by solid discs of varying sizes or by an annular jet of gas. Flow over the cone without a plume is fully laminar and attached. Using a large disc, the boundary layer is laminar at separation at the test Reynolds number. Transition occurs along the separated shear layer and the boundary layer quickly becomes turbulent. The reduction in heat transfer associated with a laminar separated region is followed by rising values as transition occurs and the heat transfer rates towards the rear of the cone substantially exceed the values obtained without a plume. With the annular jet or a small disc, separation occurs much further aft, so that heat transfer rates at the front of the cone are comparable with those found without a plume. Downstream of separation the shear layer now remains laminar and the heat transfer rates to the surface are significantly lower than the attached flow values
The Wow Factor? A Comparative Study of the Development of Student Music Teachers' Talents in Scotland and Australia
For some time there has been debate about differing perspectives on musical gift and musical intelligence. One view is that musical gift is innate: that it is present in certain individuals from birth and that the task of the teacher is to develop the potential which is there. A second view is that musical gift is a complex concept which includes responses from individuals to different environments and communities (Howe and Sloboda, 1997). This then raises the possibility that musical excellence can be taught. We have already explored this idea with practising musicians (Stollery and McPhee, 2002). Our research has now expanded to include music teachers in formation, and, in this paper, we look at the influences in their musical development which have either 'crystallised' or 'paralysed' the musical talent which they possess. Our research has a comparative dimension, being carried out in Scotland and in Australia. We conclude that there are several key influences in the musical development of the individual, including home and community support, school opportunities and teaching styles and that there may be education and culture-specific elements to these influences
Burden of Uncontrolled Severe Asthma With and Without Elevated Type-2 Inflammatory Biomarkers
Background: Many patients with asthma have type-2 airway inflammation, identified by the presence of biomarkers, including history of allergy, high blood eosinophil (EOS) count, and high fractional exhaled nitric oxide levels. Objective: To assess disease burden in relation to type-2 inflammatory biomarker status (history of allergy, blood EOS count, and fractional exhaled nitric oxide level) in patients with uncontrolled and controlled severe asthma in the NOVEL observational longiTudinal studY (NOVELTY) (NCT02760329). Methods: Asthma diagnosis and severity were physician-reported. Control was defined using Asthma Control Test score (uncontrolled <20, controlled ≥20) and/or 1 or more severe physician-reported exacerbation in the previous year. Biomarker distribution (history of allergy, blood EOS count, and fractional exhaled nitric oxide level), symptom burden (Asthma Control Test score, modified Medical Research Council dyspnea scale), health status (St George's Respiratory Questionnaire score), exacerbations, and health care resource utilization were assessed. Results: Of 647 patients with severe asthma, 446 had uncontrolled and 123 had controlled asthma. Among those with uncontrolled asthma, 196 (44%) had 2 or more positive biomarkers, 187 (42%) had 1 positive biomarker, 325 (73%) had low blood EOS, and 63 (14%) were triple-negative. Disease burden was similarly high across uncontrolled subgroups, irrespective of biomarker status, with poor symptom control (Asthma Control Test score 14.9-16.6), impaired health status (St George's Respiratory Questionnaire total score 46.7-49.4), clinically important breathlessness (modified Medical Research Council grade ≥2 in 47.3%-57.1%), and 1 or more severe exacerbation (70.6%-76.2%). Conclusions: Type-2 inflammatory biomarkers did not differentiate disease burden in patients with severe asthma. Patients with low type-2 inflammatory biomarker levels have few biologic therapy options; their needs should be addressed
Cluster Analyses From the Real-World NOVELTY Study: Six Clusters Across the Asthma-COPD Spectrum
Background: Asthma and chronic obstructive pulmonary disease (COPD) are complex diseases, the definitions of which overlap. Objective: To investigate clustering of clinical/physiological features and readily available biomarkers in patients with physician-assigned diagnoses of asthma and/or COPD in the NOVEL observational longiTudinal studY (NOVELTY; NCT02760329). Methods: Two approaches were taken to variable selection using baseline data: approach A was data-driven, hypothesis-free and used the Pearson dissimilarity matrix; approach B used an unsupervised Random Forest guided by clinical input. Cluster analyses were conducted across 100 random resamples using partitioning around medoids, followed by consensus clustering. Results: Approach A included 3796 individuals (mean age, 59.5 years; 54% female); approach B included 2934 patients (mean age, 60.7 years; 53% female). Each identified 6 mathematically stable clusters, which had overlapping characteristics. Overall, 67% to 75% of patients with asthma were in 3 clusters, and approximately 90% of patients with COPD were in 3 clusters. Although traditional features such as allergies and current/ex-smoking (respectively) were higher in these clusters, there were differences between clusters and approaches in features such as sex, ethnicity, breathlessness, frequent productive cough, and blood cell counts. The strongest predictors of the approach A cluster membership were age, weight, childhood onset, prebronchodilator FEV1, duration of dust/fume exposure, and number of daily medications. Conclusions: Cluster analyses in patients from NOVELTY with asthma and/or COPD yielded identifiable clusters, with several discriminatory features that differed from conventional diagnostic characteristics. The overlap between clusters suggests that they do not reflect discrete underlying mechanisms and points to the need for identification of molecular endotypes and potential treatment targets across asthma and/or COPD
Examining techniques for measuring the effects of nutrients on mental performance and mood state
Purpose: Intake of specific nutrients has been linked to mental states and various indices of cognitive performance although the effects are often subtle and difficult to interpret. Measurement of so-called objective variables (e.g. reaction times) is often considered to be the gold standard for assessing outcomes in this field of research. It can, however, be argued that data on subjective experience (e.g. mood) are also important and may enrich existing objective data. The aim of this review is to evaluate methods for measuring mental performance and mood, considering the definition of subjective mood and the validity of measures of subjective experience. Methods: A multi-stakeholder expert group was invited by ILSI Europe to come to a consensus around the utility of objective and subjective measurement in this field, which forms the basis of the paper. Therefore, the present review reflects a succinct overview of the science but is not intended to be a systematic review. Results: The proposed approach extends the traditional methodology using standard ‘objective’ measurements to also include the consumers’ subjective experiences in relation to food. Specific recommendations include 1) using contemporary methods to capture transient mood states; 2) using sufficiently sensitive measures to capture effects of nutritional intervention; 3) considering the possibility that subjective and objective responses will occur over different time frames; and 4) recognition of the importance of expectancy and placebo effects for subjective measures. Conclusions: The consensus reached was that the most informative approach should involve collection and consideration of both objective and subjective data
A case study on the aerodynamic heating of a hypersonic vehicle
A Parabolised Navier-Stokes (PNS) flow solver is used to predict the aerodynamic heating on the surface of a hypersonic vehicle. This case study highlights some of the main heat flux sensitivies to various conditions for a full-scale vehicle and illustrates the use of different complimentary methods in assessing the heat load for a realistic application. Different flight phases of the vehicle are considered, with freestream conditions from Mach 4 to Mach 8 across a range of altitudes. Both laminar and turbulent flows are studied, together with the effect of the isothermal wall temperature, boundary-layer transition location and body incidence. The effect of the Spalart-Allmaras and Baldwin-Lomax turbulent models on the heat transfer distributions is assessed. A rigorous assessment of the computations is conducted through both iterative and grid convergence studies and a supporting experimental investigation is performed on a 1/20th scale model of the vehicle's forebody for the validation of the numerical results. Good agreement is found between the PNS predictions, measurements and empirical methods for the vehicle forebody. The present PNS approach is shown to provide useful predictions of the heat transfer over the axisymmetric vehicle body. A highly complex flow field is predicted in the fin-body-fin region at the rear of the vehicle characterised by strong interference effects which limit the predictions over this region to a predominately qualitative level
Measurement of shock wave unsteadiness using a high-speed schlieren system and digital image processing
A new method to measure shock wave unsteadiness is presented. Time-resolved visualizations of the flow field under investigation are obtained using a high-speed schlieren optical system and the motion of the shock wave is determined by means of digital image processing. Information on the shock’s unsteadiness is subsequently derived with Fourier analysis. A sample study on shock unsteadiness in a shock-wave/turbulent boundary-layer interaction with separation is included. The method presented enables a measure of shock unsteadiness at locations in the imaged flow field not accessible by intrusive methods
Hypersonic interference heating in the vicinity of surface protuberances
The understanding of the behaviour of the flow around surface protuberances in
hypersonic vehicles is developed and an engineering approach to predict the
location and magnitude of the highest heat transfer rates in their vicinity is
presented. To this end, an experimental investigation was performed in a
hypersonic facility at freestream Mach numbers of 8.2 and 12.3 and Reynolds
numbers ranging from Re (a)/m = 3.35 x 10(6) to Re (a)/m = 9.35 x 10(6). The
effects of protuberance geometry, boundary layer state, freestream Reynolds
number and freestream Mach numbers were assessed based on thin-film heat
transfer measurements. Further understanding of the flowfield was obtained
through oil-dot visualizations and high-speed schlieren videos. The local
interference interaction was shown to be strongly 3-D and to be dominated by the
incipient separation angle induced by the protuberance. In interactions in which
the incoming boundary layer remains unseparated upstream of the protuberance,
the highest heating occurs adjacent to the device. In interactions in which the
incoming boundary layer is fully separated ahead of the protuberance, the
highest heating generally occurs on the surface just upstream of it except for
low-deflection protuberances under low Reynolds freestream flow conditions in
which case the heat flux to the side is greater
- …
