8,276 research outputs found

    'Older people for older people' toolkit: developing social enterprise and service delivery in remote and rural areas

    Get PDF

    Symmetry Analysis of Multiferroic Co_3TeO_6

    Get PDF
    A phenomenological explanation of the magnetoelectric behavior of Co_3TeO_6 is developed. We explain the second harmonic generation data and the magnetic field induced spontaneous polarization in the magnetically ordered phase below 20K.Comment: Phys rev B Rapids, to appea

    Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules

    Full text link
    Starting from the Weyl gauge formulation of quantum electrodynamics (QED), the formalism of quantum-mechanical gauge fixing is extended using techniques from nonrelativistic QED. This involves expressing the redundant gauge degrees of freedom through an arbitrary functional of the gauge-invariant transverse degrees of freedom. Particular choices of functional can be made to yield the Coulomb gauge and Poincar\'{e} gauge representations. The Hamiltonian we derive therefore serves as a good starting point for the description of atoms and molecules by means of a relativistic Dirac field. We discuss important implications for the ontology of noncovariant canonical QED due to the gauge freedom that remains present in our formulation.Comment: 8 pages, 0 figure

    Using thermodynamics to identify quantum subsystems

    Get PDF
    There are many ways to decompose the Hilbert space ℋ of a composite quantum system into tensor product subspaces. Different subsystem decompositions generally imply different interaction Hamiltonians V, and therefore different expectation values for subsystem observables. This means that the uniqueness of physical predictions is not guaranteed, despite the uniqueness of the total Hamiltonian H and the total Hilbert space ℋ. Here we use Clausius’ version of the second law of thermodynamics (CSL) and standard identifications of thermodynamic quantities to identify possible subsystem decompositions. It is shown that agreement with the CSL is obtained, whenever the total Hamiltonian and the subsystem-dependent interaction Hamiltonian commute (i.e. [H,V]=0). Not imposing this constraint can result in the transfer of heat from a cooler to a hotter subsystem, in conflict with thermodynamics. We also investigate the status of the CSL with respect to non-standard definitions of thermodynamic quantities and quantum subsystems

    Network formation of tissue cells via preferential attraction to elongated structures

    Full text link
    Vascular and non-vascular cells often form an interconnected network in vitro, similar to the early vascular bed of warm blooded embryos. Our time-lapse recordings show that the network forms by extending sprouts, i.e., multicellular linear segments. To explain the emergence of such structures, we propose a simple model of preferential attraction to stretched cells. Numerical simulations reveal that the model evolves into a quasi-stationary pattern containing linear segments, which interconnect above the critical volume fraction of 0.2. In the quasi-stationary state the generation of new branches offset the coarsening driven by surface tension. In agreement with empirical data, the characteristic size of the resulting polygonal pattern is density-independent within a wide range of volume fractions

    Rotating light, OAM paradox and relativistic complex scalar field

    Full text link
    Recent studies show that the angular momentum, both spin and orbital, of rotating light beams possesses counter-intuitive characteristics. We present a new approach to the question of orbital angular momentum of light based on the complex massless scalar field representation of light. The covariant equation for the scalar field is treated in rotating system using the general relativistic framework. First we show the equivalence of the U(1) gauge current for the scalar field with the Poynting vector continuity equation for paraxial light, and then apply the formalism to the calculation of the orbital angular momentum of rotating light beams. If the difference between the co-, contra-, and physical quantities is properly accounted for there does not result any paradox in the orbital angular momentum of rotating light. An artificial analogue of the paradoxical situation could be constructed but it is wrong within the present formalism. It is shown that the orbital angular momentum of rotating beam comprising of modes with opposite azimuthal indices corresponds to that of rigid rotation. A short review on the electromagnetism in noninertial systems is presented to motivate a fully covariant Maxwell field approach in rotating system to address the rotating light phenomenon.Comment: No figure

    Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection

    Full text link
    We report an experimental demonstration of effective entanglement in a prepare&measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q-function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a non-separability criterion previously presented by Rigas et al. [J. Rigas, O. G\"uhne, N. L\"utkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario we predict key rates using postselection of the heterodyne measurement results.Comment: 12 pages, 12 figures, 2 table

    Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic Peninsula

    Get PDF
    This paper presents a glacial geomorphological map of over 17,000 landforms on the bed of a major palaeo-ice stream in Marguerite Bay, western Antarctic Peninsula. The map was compiled using various geophysical datasets from multiple marine research cruises. Eight glacial landform types are identified: mega-scale glacial lineations, crag-and-tails, whalebacks, gouged, grooved and streamlined bedrock, grounding-zone wedges, subglacial meltwater channels, gullies and channels, and iceberg scours. The map represents one of the most complete marine ice-stream signatures available for scrutiny, and these data hold much potential for reconstructing former ice sheet dynamics, testing numerical ice sheet models, and understanding the formation of subglacial bedforms beneath ice streams. In particular, they record a complex bedform signature of palaeo-ice stream flow and retreat since the last glacial maximum, characterised by considerable spatial variability and strongly influenced by the underlying geology. The map is presented at a scale of 1: 750,000, designed to be printed at A2 size, and encompasses an area of 128,420 km2
    • …
    corecore