228 research outputs found

    Altitude, latitude and climate zone as determinants of mountain hare (Lepus timidus) coat colour change

    Get PDF
    Local adaptation to annually changing environments has evolved in numerous species. Seasonal coat colour change is an adaptation that has evolved in multiple mammal and bird species occupying areas that experience seasonal snow cover. It has a critical impact on fitness as predation risk may increase when an individual is mismatched against its habitat's background colour. In this paper, we investigate the correlation between landscape covariates and moult timing in a native winter-adapted herbivore, the mountain hare (Lepus timidus), throughout Norway. Data was collected between 2011 and 2019 at 678 camera trap locations deployed across an environmental gradient. Based on this data, we created a Bayesian multinomial logistic regression model that quantified the correlations between landscape covariates and coat colour phenology and analysed among season and year moult timing variation. Our results demonstrate that mountain hare moult timing is strongly correlated with altitude and latitude with hares that live at higher latitudes and altitudes keeping their winter white coats for longer than their conspecifics that inhabit lower latitudes and altitudes. Moult timing was also weakly correlated with climate zone with hares that live in coastal climates keeping their winter white coats for longer than hares that live in continental climates. We found evidence of some among year moult timing variation in spring, but not in autumn. We conclude that mountain hare moult timing has adapted to local environmental conditions throughout Norway

    Combining survey and remotely sensed environmental data to estimate the habitat associations, abundance and distribution of breeding thin-billed prions Pachyptila belcheri and Wilson’s storm-petrels Oceanites oceanicus on a South Atlantic tussac island

    Get PDF
    Small petrels are the most abundant seabirds in the Southern Ocean. However, because they breed in burrows on remote and often densely vegetated islands, their colony sizes and conservation status remain poorly known. To estimate the abundance of these species on Bird Island in the Falkland archipelago, we systematically surveyed their breeding burrow density and occupancy across this near-pristine tussac (Poa flabellata)-covered island. By modelling burrow density as functions of topography and Sentinel 2 satellite-derived Normalised Difference Vegetation Index data, we inferred habitat associations and predicted burrow abundance of the commonest species—Thin-billed Prions (Pachyptila belcheri) and Wilson’s Storm-petrels (Oceanites oceanicus). We estimate that there are 631,000 Thin-billed Prion burrows on the island (95% CI 496,000–904,000 burrows). Assuming that burrow occupancy lies between 12 and 97%, this equates to around 76,000–612,000 breeding pairs, making Bird Island the second or third largest P. belcheri colony in the world, holding approximately 3–27% of the species’ breeding population. We estimate that 8200–9800 (95% CI 5,200–18,300 pairs) pairs of Wilson’s Storm-petrels also breed on the island. Notably, the latter burrowed predominantly under and within tussac pedestals, whereas they are usually assumed to breed in rock cavities. Thin-billed Prions are declining in the Kerguelen archipelago, but their population trends in the Falklands are unknown. Given the wide confidence intervals around our own and other population estimates for these cryptic species, we recommend that their populations should be monitored regularly, at multiple sites.Fundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    A leaky umbrella has little value: evidence clearly indicates the serotonin system is implicated in depression.

    Get PDF
    A recent “umbrella” review examined various biomarkers relating to the serotonin system, and concluded there was no consistent evidence implicating serotonin in the pathophysiology of depression. We present reasons for why this conclusion is overstated, including methodological weaknesses in the review process, selective reporting of data, over-simplification, and errors in the interpretation of neuropsychopharmacological findings. We use the examples of tryptophan depletion and serotonergic molecular imaging, the two research areas most relevant to the investigation of serotonin, to illustrate this

    A leaky umbrella has little value:evidence clearly indicates the serotonin system is implicated in depression

    Get PDF
    A recent “umbrella” review examined various biomarkers relating to the serotonin system, and concluded there was no consistent evidence implicating serotonin in the pathophysiology of depression. We present reasons for why this conclusion is overstated, including methodological weaknesses in the review process, selective reporting of data, over-simplification, and errors in the interpretation of neuropsychopharmacological findings. We use the examples of tryptophan depletion and serotonergic molecular imaging, the two research areas most relevant to the investigation of serotonin, to illustrate this

    Efficacy and safety of established and off-label ADHD drug therapies for cognitive impairment or attention-deficit hyperactivity disorder symptoms in bipolar disorder: A systematic review by the ISBD Targeting Cognition Task Force

    Get PDF
    BACKGROUND: Abnormalities in dopamine and norepinephrine signaling are implicated in cognitive impairments in bipolar disorder (BD) and attention-deficit hyperactivity disorder (ADHD). This systematic review by the ISBD Targeting Cognition Task Force therefore aimed to investigate the possible benefits on cognition and/or ADHD symptoms and safety of established and off-label ADHD therapies in BD. METHODS: We included studies of ADHD medications in BD patients, which involved cognitive and/or safety measures. We followed the procedures of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 statement. Searches were conducted on PubMed, Embase and PsycINFO from inception until June 2023. Two authors reviewed the studies independently using the Revised Cochrane Collaboration's Risk of Bias tool for Randomized trials. RESULTS: Seventeen studies were identified (N = 2136), investigating armodafinil (k = 4, N = 1581), methylphenidate (k = 4, N = 84), bupropion (k = 4, n = 249), clonidine (k = 1, n = 70), lisdexamphetamine (k = 1, n = 25), mixed amphetamine salts (k = 1, n = 30), or modafinil (k = 2, n = 97). Three studies investigated cognition, four ADHD symptoms, and 10 the safety. Three studies found treatment-related ADHD symptom reduction: two involved methylphenidate and one amphetamine salts. One study found a trend towards pro-cognitive effects of modafinil on some cognitive domains. No increased risk of (hypo)mania was observed. Five studies had low risk of bias, eleven a moderate risk, and one a serious risk of bias. CONCLUSIONS: Methylphenidate or mixed amphetamine salts may improve ADHD symptoms in BD. However, there is limited evidence regarding the effectiveness on cognition. The medications produced no increased mania risk when used alongside mood stabilizers. Further robust studies are needed to assess cognition in BD patients receiving psychostimulant treatment alongside mood stabilizers

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Genome-wide DNA methylation profiling in whole blood reveals epigenetic signatures associated with migraine

    Full text link
    Abstract Background Migraine is a common heritable neurovascular disorder typically characterised by episodic attacks of severe pulsating headache and nausea, often accompanied by visual, auditory or other sensory symptoms. Although genome-wide association studies have identified over 40 single nucleotide polymorphisms associated with migraine, there remains uncertainty about the casual genes involved in disease pathogenesis and how their function is regulated. Results We performed an epigenome-wide association study, quantifying genome-wide patterns of DNA methylation in 67 migraine cases and 67 controls with a matching age and sex distribution. Association analyses between migraine and methylation probe expression, after adjustment for cell type proportions, indicated an excess of small P values, but there was no significant single-probe association after correction for multiple testing (P < 1.09 × 10− 7). However, utilising a 1 kb sliding window approach to combine adjacent migraine-methylation association P values, we identified 62 independent differentially methylated regions (DMRs) underlying migraine (false discovery rate < 0.05). Migraine association signals were subtle but consistent in effect direction across the length of each DMR. Subsequent analyses showed that the migraine-associated DMRs were enriched in regulatory elements of the genome and were in close proximity to genes involved in solute transportation and haemostasis. Conclusions This study represents the first genome-wide analysis of DNA methylation in migraine. We have identified DNA methylation in the whole blood of subjects associated with migraine, highlighting novel loci that provide insight into the biological pathways and mechanisms underlying migraine pathogenesis

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF
    • …
    corecore