262 research outputs found
Personalized surveillance and aftercare for non-metastasized breast cancer:the NABOR study protocol of a multiple interrupted time series design
Background: Follow-up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patientsâ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost-)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient-reported cancer worry, self-rated and overall quality of life and (cost-)effectiveness.Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they -stepwise- will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the âBreast Cancer Surveillance Decision Aidâ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision-making is supported by a patient decision aid. Patients are non-metastasized female primary breast cancer patients (N = 1040) who are curatively treated and start follow-up care. Patient reported outcomes will be measured at five points in time during two years of follow-up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patientsâ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient-reported cancer worry (Cancer Worry Scale) and overall quality of life (as assessed with EQ-VAS score). Secondary outcomes include health care costs and resource use, health-related quality of life (as measured with EQ5D-5L/SF-12/EORTC-QLQ-C30), risk perception, shared decision-making, patient satisfaction, societal participation, and cost-effectiveness. Next, the uptake and appreciation of personalized plans and patientsâ experiences of their decision-making process will be evaluated. Discussion: This study will contribute to insight in the (cost-)effectiveness of personalized follow-up care and contributes to development of uniform evidence-based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.</p
The OMERACT emerging leaders program: The good, the bad, and the future
The Journal of Rheumatology Copyright © 2019. All rights reserved. Objective. To describe the experience of the first OMERACT Emerging Leaders Program (ELP). Methods. A Delphi process identified positive aspects, areas for improvement, and future directions. Core items were defined as essential if they received ℠70% ratings. Results. Participants valued relatable/accessible mentors (100%), including an OMERACT Executive mentor (100%), and a support network of peers (90%). Key items for future development were funding support (100%) and developing knowledge about OMERACT processes (90%) and politics (80%). Conclusion. The ELP has the potential to provide targeted training for early career researchers to develop relevant skills for future leadership roles within OMERACT
Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage
Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies
Speeding-Up Expensive Evaluations in High-Level Synthesis Using Solution Modeling and Fitness Inheritance
High-Level Synthesis (HLS) is the process of developing digital circuits from behavioral specifications. It involves three interdependent and NP-complete optimization problems: (i) the operation scheduling, (ii) the resource allocation, and (iii) the controller synthesis. Evolutionary Algorithms have been already effectively applied to HLS to find good solution in presence of conflicting design objectives. In this paper, we present an evolutionary approach to HLS that extends previous works in three respects: (i) we exploit the NSGA-II, a multi-objective genetic algorithm, to fully automate the design space exploration without the need of any human intervention, (ii) we replace the expensive evaluation process of candidate solutions with a quite accurate regression model, and (iii) we reduce the number of evaluations with a fitness inheritance scheme. We tested our approach on several benchmark problems. Our results suggest that all the enhancements introduced improve the overall performance of the evolutionary search
The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma
While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development
The Effect of Histopathological Growth Patterns of Colorectal Liver Metastases on the Survival Benefit of Adjuvant Hepatic Arterial Infusion Pump Chemotherapy
Background: Histopathological growth patterns (HGPs) are a prognostic biomarker in colorectal liver metastases (CRLM). Desmoplastic HGP (dHGP) is associated with liver-only recurrence and superior overall survival (OS), while non-dHGP is associated with multi-organ recurrence and inferior OS. This study investigated the predictive value of HGPs for adjuvant hepatic arterial infusion pump (HAIP) chemotherapy in CRLM. Methods: Patients undergoing resection of CRLM and perioperative systemic chemotherapy in two centers were included. Survival outcomes and the predictive value of HAIP versus no HAIP per HGP group were evaluated through KaplanâMeier and Cox regression methods, respectively. Results:We included 1233 patients. In the dHGP group (n = 291, 24%), HAIP chemotherapy was administered in 75 patients (26%). In the non-dHGP group (n = 942, 76%), HAIP chemotherapy was administered in 247 patients (26%). dHGP was associated with improved overall survival (OS, HR 0.49, 95% CI 0.32â0.73, p < 0.001). HAIP chemotherapy was associated with improved OS (HR 0.61, 95% CI 0.45â0.82, p < 0.001). No interaction could be demonstrated between HGP and HAIP on OS (HR 1.29, 95% CI 0.72â2.32, p = 0.40).Conclusions: There is no evidence that HGPs of CRLM modify the survival benefit of adjuvant HAIP chemotherapy in patients with resected CRLM.</p
- âŠ