8 research outputs found

    Glucocorticoids, master modulators of the thymic catecholaminergic system?

    Get PDF
    There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg.100 g body weight(-1).day(-1)) for 4 days. The effects of beta-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCR alpha beta(high) thymocytes as revealed by two-way ANOVA; for CD4(+)CD8(-)F (1,20) = 10.92, P lt 0.01; for CD4(-)CD8(+)F (1,20) = 7.47, P lt 0.05], a skewed thymocyte maturation towards the CD4(-)CD8(+) phenotype, and consequently a diminished CD4(+)CD8(-)/CD4(-)CD8(+) mature TCR alpha beta(high) thymocyte ratio (3.41 +/- 0.21 in non-adrenalectomized rats vs 2.90 +/- 0.31 in adrenalectomized rats, P lt 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only beta-adrenoceptor- but also alpha-adrenoceptor-mediated modulation of thymopoiesis

    Aging diminishes the resistance of AO rats to EAE: putative role of enhanced generation of GM-CSF Expressing CD4+T cells in aged rats

    Get PDF
    Background: Aging influences immune response and susceptibility to EAE in a strain specific manner. The study was designed to examine influence of aging on EAE induction in Albino Oxford (AO) rats. Results: Differently from 3-month-old (young) rats, which were resistant to EAE induction, the majority of aged (24-26-month-old) rats developed mild chronic form of EAE. On 16th day post-immunization, when in aged rats the neurological deficit reached plateau, more mononuclear cells, including CD4+ T lymphocytes was retrieved from spinal cord of aged than young rats. The frequencies of IL-17+ and GM-CSF+ cells within spinal cord infiltrating CD4+ lymphocytes were greater in aged rats. To their increased frequency contributed the expansion of GM-CSF + IL-17 + IFN-gamma+ cells, which are highly pathogenic in mice. The expression of the cytokines (IL-1 beta and IL-23/p19) driving GM-CSF + IL-17 + IFN-gamma + cell differentiation in mice was also augmented in aged rat spinal cord mononuclear cells. Additionally, in aged rat spinal cord the expansion of GM-CSF + IL-17-IFN-gamma- CD4+ T lymphocytes was found. Consistently, the expression of mRNAs for IL-3, the cytokine exhibiting the same expression pattern as GM-CSF, and IL-7, the cytokine driving differentiation of GM-CSF + IL-17-IFN-gamma- CD4 + lymphocytes in mice, was upregulated in aged rat spinal cord mononuclear cells, and the tissue, respectively. This was in accordance with the enhanced generation of the brain antigen-specific GM-CSF+ CD4+ lymphocytes in aged rat draining lymph nodes, as suggested by (i) the higher frequency of GM-CSF+ cells (reflecting the expansion of IL-17-IFN-gamma- cells) within their CD4+ lymphocytes and (ii) the upregulated GM-CSF and IL-3 mRNA expression in fresh CD4+ lymphocytes and MBP-stimulated draining lymph node cells and IL-7 mRNA in lymph node tissue from aged rats. In agreement with the upregulated GM-CSF expression in aged rats, strikingly more CD11b + CD45(int) (activated microglia) and CD45(hi) (mainly proinflammatory dendritic cells and macrophages) cells was retrieved from aged than young rat spinal cord. Besides, expression of mRNA for SOCS1, a negative regulator of proinflammatory cytokine expression in innate immunity cells, was downregulated in aged rat spinal cord mononuclear cells. Conclusions: The study revealed that aging may overcome genetic resistance to EAE, and indicated the cellular and molecular mechanisms contributing to this phenomenon in AO rats

    GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis

    Get PDF
    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+ IFN-gamma+, IL-17+ IFN-gamma-, and IL-17-IFN-gamma+ cells accompanied by higher frequency of IL-17-IFN-gamma- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+ IFN-gamma+ Th17 cells in SC) on GM-CSF+ IFN-gamma+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+ IFN-gamma+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1 beta, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45(hi) cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto) reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE

    Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

    Get PDF
    In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage

    Differentiation and function of human monocyte-derived dendritic cells under the influence of leflunomide

    No full text
    Leflunomide is an immunosuppressive drug effective in experimental models of transplantation and autoimmune diseases and in the treatment of active rheumatoid arthritis (RA). Having in mind that it has been shown that some other immunosuppressive drugs (glucocorticoids, mycophenolate mofetil, sirolimus etc.) impair dendritic cell (DC) phenotype and function, we investigated the effect of A77 1726, an active metabolite of leflunomide, on the differentiation and function of human monocyte-derived dendritic cells (MDDC) in vitro. Immature MDDC were generated by cultivating monocytes in medium supplemented with GM-CSF and IL-4. To induce maturation, immature MDDC were cultured for 2 additional days with LPS. A77 1726 (100 μM) was added at the beginning of cultivation. Flow cytometric analysis showed that MDDC differentiated in the presence of A77 1726 exhibited an altered phenotype, with a down-regulated surface expression of CD80, CD86, CD54 and CD40 molecules. Furthermore, the continuous presence of A77 1726 during differentiation and maturation prevented successful maturation, judging by the decreased expression of maturation marker CD83, costimulatory and adhesive molecules on A77 1726-treated mature MDDC. In addition, A77 1726-pretreated MDDC exhibited a poor stimulatory capacity of the allogeneic T cells and a low production of IL-10 and IL-18. These data suggest that leflunomide impairs the differentiation, maturation and function of human MDDC in vitro, which is an additional mechanism of its immunosuppressive effect

    Comparison of two different protocols for the induction of maturation of human dendritic cells in vitro.

    Get PDF
    BACKGROUND: Dendritic cells (DC) have been used for immunotherapy of malignant tumors, different kinds of infections, and other clinical conditions. For that purpose, optimal conditions for the generation of functionally mature DC in vitro are required. Two different protocols for the induction of maturation of monocyte-derived DC (MDDC) were compared in this study. METHODS: MDDC were generated in vitro by cultivating adherent monocytes of healthy volunteers with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin 4 (IL-4) during 6-days period. The immature DC thus prepared were induced to mature using two protocols. DC were stimulated for 2 days with lipopolysaccharide (LPS), or with a cocktail of proinflammatory mediators (PM) containing IL-1beta, IL-6, tumor necrosis factor alpha (TNFalpha), and prostaglandin E2 (PGE2), respectively. Phenotypic characteristics of MDDC and their endocytic activity were studied by flow cytometry. Allostimulatory activity of these cells was tested in the mixed leukocyte reaction (MLR), whereas the production of cytokines was determined by ELISA kits. RESULTS: MDDC matured with PM (PM-DC) were predominantly non-adherent cells, while about 30% of LPS-matured DC were adherent cells. In comparison with LPS-DC, PM-DC expressed higher levels of CD86 and CD83, had lower endocytic activity, produced higher levels of IL-10 and lower levels of IL-12, and more strongly stimulated proliferation of allogeneic lymphocytes. CONCLUSION: The protocol based on the combination of proinflammatory cytokines and PGE2 is better for the induction of maturation of human MDDC in vitro than the protocol using LPS alone

    Supplementary Material for: Androgens Contribute to Age-Associated Changes in Peripheral T-Cell Homeostasis Acting in a Thymus-Independent Way

    No full text
    <b><i>Objective:</i></b> Considering a causal role of androgens in thymic involution, age-related remodeling of peripheral T-cell compartments in the absence of testicular hormones was evaluated. <b><i>Methods:</i></b> Rats were orchidectomized (ORX) at the age of 1 month, and T-peripheral blood lymphocytes (PBLs) and splenocytes from young (75-day-old) and aged (24-month-old) rats were examined for differentiation/activation and immunoregulatory marker expression. <b><i>Results:</i></b> In ORX rats, following the initial rise, the counts of CD4+ and CD8+ PBLs diminished with aging. This reflected the decline in thymic export as shown by recent thymic emigrant (RTE) enumeration. Orchidectomy increased the count of both of the major T-splenocyte subsets in young rats, and they (differently from controls) remained stable with aging. The CD4+:CD8+ T-splenocyte ratio in ORX rats shifted towards CD4+ cells compared to age-matched controls. Although in the major T-cell subsets in the blood and spleen from aged ORX rats the numbers of RTEs were comparable to the corresponding values in age-matched controls, the numbers of mature naïve and memory/activated cells substantially differed. Compared with age-matched controls, in aged ORX rats the numbers of CD4+ mature naïve PBLs and splenocytes were reduced, whereas those of CD4+ memory/activated cells (predictive of early mortality) were increased. Additionally, in spleens from aged ORX rats, despite unaltered thymic export, CD4+CD25+FoxP3+ and natural killer T cell counts were greater than in age-matched controls. <b><i>Conclusion:</i></b> (i) Age-related decline in thymopoietic efficacy is not dependent on androgen presence, and (ii) androgens are involved in the maintenance of peripheral T-cell (particularly CD4+ cell) homeostasis during aging

    Leukocytosis and Enhanced Susceptibility to Endotoxemia but Not Atherosclerosis in Adrenalectomized APOE Knockout Mice

    Get PDF
    Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins
    corecore