7 research outputs found

    Reflection confocal nanoscopy using a super-oscillatory lens

    Full text link
    A Superoscillatory lens (SOL) is known to produce a sub-diffraction hotspot which is useful for high-resolution imaging. However, high-energy rings called sidelobes coexist with the central hotspot. Additionally, SOLs have not yet been directly used to image reflective objects due to low efficiency and poor imaging properties. We propose a novel reflection confocal nanoscope which mitigates these issues by relaying the SOL intensity pattern onto the object and use conventional optics for detection. We experimentally demonstrate super-resolution by imaging double bars with 330 nm separation using a 632.8 nm excitation and a 0.95 NA objective. We also discuss the enhanced contrast properties of the SOL nanoscope against a laser confocal microscope, and the degradation of performance while imaging large objects.Comment: 17 pages, 15 figures, supplementary include

    Nanostructure-modulated planar high spectral resolution spectro-polarimeter

    Get PDF
    We present a planar spectro-polarimeter based on Fabry-P{\'e}rot cavities with embedded polarization-sensitive high-index nanostructures. A 7 Ό7~\mum-thick spectro-polarimetric system for 3 spectral bands and 2 linear polarization states is experimentally demonstrated. Furthermore, an optimal design is theoretically proposed, estimating that a system with a bandwidth of 127~nm and a spectral resolution of 1~nm is able to reconstruct the first three Stokes parameters \textcolor{black}{with a signal-to-noise ratio of -13.14~dB with respect to the the shot noise limited SNR}. The pixelated spectro-polarimetric system can be directly integrated on a sensor, thus enabling applicability in a variety of miniaturized optical devices, including but not limited to satellites for Earth observation

    Multi-layer Discrete Dipole Approximation (MDDA) simulation tool

    No full text
    A method for simulating the scattering of particlesembedded in planar multi-layered structures, is presented.The discrete-dipole approximation is extended byincluding the multi-layer dyadic Green’s function into thealgorithm. The dyadic Green’s function is computed in thespectral domain and is then transformed back to the spatialdomain using Sommerfeld integrals, special care is taken tomake this transform fast and accurate.A method for simulating the scattering of particles embedded in planar multi-layered structures, is presented. The discrete-dipole approximation is extended by including the multi-layer dyadic Green’s function into the algorithm. The dyadic Green’s function is computed in the spectral domain and is then transformed back to the spatial domain using Sommerfeld integrals, special care is taken to make this transform fast and accurate

    Lattice Resonances and Local Field Enhancement in Array of Dielectric Dimers for Surface Enhanced Raman Spectroscopy

    Get PDF
    Abstract In this paper, we propose the use of high refractive index dimers for the realization of a surface enhanced Raman spectroscopy substrate, with an average enhancement factor comparable to plasmonic structures. The use of low loss dielectric materials is favorable to metallic ones, because of their lower light absorption and consequently a much lower heating effect of the substrate. We combined two different mechanisms of field enhancement to overcome the main weakness of dielectric dimers: a low enhancement factor compared to the plasmonic ones. A first mechanisms is associated to surface lattice resonances. This generates a narrow-band high enhancement, which is exploited to enhance the excitation light. A second mechanism exploits the local field enhancement between the dimers’ resonators, for the band where the molecule Raman emission spectrum is located. The fact that both field enhancements can be tuned by acting on separate geometric parameters, makes possible to optimize the design for many different molecules. The optimized structure and its performance is presented together with a discussion of the different enhancement mechanisms
    corecore