377 research outputs found

    Report on Scientific advice to TfL on bus driver assault screen modifications due to the Covid-19 pandemic

    Get PDF
    In April 2020 Transport for London (TfL) commissioned the UCL Department of Civil, Environmental and Geomatic Engineering (CEGE) to explore measures to mitigate the occupational risk posed to London bus drivers from the COVID-19 pandemic, following the tragic deaths of a number of drivers among bus operators within London. A separate study undertaken by UCL’s Institute of Health Equality has examined more comprehensively a number of other risk factors affecting bus drivers, including beyond their occupational risk. Phase one of that study was published on the 27th July 2020 and has determined that “there is evidence that among bus drivers those aged 65 and over, those from BAME backgrounds and those with pre-existing hypertension are at a higher risk of COVID-19 mortality and this should be taken into accounts in efforts by TfL and bus companies to reduce risks”. TfL asked UCL CEGE to explore the nature of this occupational risk in relation to the interaction between passengers and the bus driver, and the effects arising as a result of the design of the bus itself, in particular the assault screen. The assault screen is a pre-existing transparent polycarbonate fixture designed to resist physical attacks, such as stabbings, while allowing the driver to have both a clear view through the screen, access the electronic ticket machine and provide receipts when required, and the ability to be able to hear and speak to passengers as the need arises. It was not originally designed to keep the driver completely isolated from the passengers. A set of detailed models was created of the front part of a typical London bus, including both front and central doors, the driver’s cabin and a detailed dynamic model of the bus driver, and then detailed CFD simulations were carried out. These calculated the motion of aerosols emanating from a passenger who is coughing and breathing in a number of positions relative to the driver’s cabin under a variety of design and operational scenarios in order to identify appropriate interventions. A typical screen and bus design were chosen for the simulations, that addressed all the relevant design issues - gaps, door and window operations - as a representative case for all buses. The original (pre-COVID) designs of polycarbonate dividers or screens were only marginally protective against aerosols and were not sufficient on their own to protect against airborne transmission of SARS-CoV-2. A set of recommendations has been made with the aim of reducing this risk to London drivers in particular as much as is practically possible, further to interventions already initiated by TfL. Buses in large cities are a unique indoor environment that is confined and often crowded at rush hour or in tourist season and, if poorly ventilated there is potential for airborne transmission of infectious diseases which may pose a risk to drivers due to their prolonged exposure times. Further work is required to determine if there may be a risk to passengers too, if they are on board for long journeys. Regardless of any mechanical or physical interventions to reduce risk, it is recommended that in the medium-term, targets for Indoor Air Quality (IAQ) standards on public transport are developed and adopted. This, due to the high number of daily passengers, some of whom have long journey durations (>1hr if commuting from zones 4 and beyond) and the prevalence of infectious diseases such as influenza and the common cold in the population every winter season, which carry large economic costs and also cost lives. The emergence of highly infectious and more dangerous diseases in the UK and around the world in the past two decades, such as SARS-CoV-2, SARS, H1N1 (swine flu) or MERS, all indicate that it is very timely to invest efforts towards maintaining healthy and safe indoor air on public transport

    Dynamic drag modeling of submerged aquatic vegetation canopy flows

    Get PDF
    Vegetation has a profound effect on flow and sediment transport processes in natural rivers, by increasing both skin friction and form drag. The increase in drag introduces a drag discontinuity between the in-canopy flow and the flow above, which leads to the development of an inflection point in the velocity profile, resembling a free shear layer. Therefore, drag acts as the primary driver for the entire canopy system. Most current numerical hydraulic models which incorporate vegetation rely either on simple, static plant forms, or canopy-scaled drag terms. However, it is suggested that these are insufficient as vegetation canopies represent complex, dynamic, porous blockages within the flow, which are subject to spatially and temporally dynamic drag forces. Here we present a dynamic drag methodology within a CFD framework. Preliminary results for a benchmark cylinder case highlight the accuracy of the method, and suggest its applicability to more complex cases

    Occurrence and characterization of Escherichia coli ST410 co-harbouring blaNDM-5, blaCMY-42 and blaTEM-190 in a dog from the UK.

    Get PDF
    Background/Objectives:Carbapenemase-producing Enterobacteriaceae (CPE) are a public health threat, and have been found in humans, animals and the environment. Carbapenems are not authorized for use in EU or UK companion animals, and the prevalence of carbapenem-resistant Gram-negative bacilli (CRGNB) in this population is unknown. Methods:We investigated CRGNB isolated from animal specimens received by one diagnostic laboratory from 34 UK veterinary practices (September 2015-December 2016). Any Gram-negative isolates from clinical specimens showing reduced susceptibility to fluoroquinolones and/or aminoglycosides and/or cephalosporins were investigated phenotypically and genotypically for carbapenemases. A complete genome assembly (Illumina/Nanopore) was generated for the single isolate identified to investigate the genetic context for carbapenem resistance. Results:One ST410 Escherichia coli isolate [(CARB35); 1/191, 0.5%], cultured from a wound in a springer spaniel, harboured a known carbapenem resistance gene (blaNDM-5). The gene was located in the chromosome on an integrated 100 kb IncF plasmid, also harbouring other drug resistance genes (mrx, sul1, ant1 and dfrA). The isolate also contained blaCMY-42 and blaTEM-190 on two separate plasmids (IncI1 and IncFII, respectively) that showed homology with other publicly available plasmid sequences from Italy and Myanmar. Conclusions:Even though the use of carbapenems in companion animals is restricted, the concurrent presence of blaCMY-42 and other antimicrobial resistance genes could lead to co-selection of carbapenemase genes in this population. Further studies investigating the selection and flow of plasmids carrying important resistance genes amongst humans and companion animals are needed

    Frequencies and patterns of microbiology test requests from primary care in Oxfordshire, UK, 2008-2018: a retrospective cohort study of electronic health records to inform point of care testing

    Get PDF
    Objectives: To inform point-of-care test (POCT) development, we quantified the primary care demand for laboratory microbiology tests by describing their frequencies overall, frequencies of positives, most common organisms identified, temporal trends in testing and patterns of cotesting on the same and subsequent dates. Design: Retrospective cohort study. Setting: Primary care practices in Oxfordshire. Participants :393 905 patients (65% female; 49% aged 18–49). Primary and secondary outcome measures The frequencies of all microbiology tests requested between 2008 and 2018 were quantified. Patterns of cotesting were investigated with heat maps. All analyses were done overall, by sex and age categories. Results: 1 596 752 microbiology tests were requested. Urine culture±microscopy was the most common of all tests (n=673 612, 42%), was mainly requested without other tests and was the most common test requested in follow-up within 7 and 14 days. Of all urine cultures, 180 047 (27%) were positive and 172 651 (26%) showed mixed growth, and Escherichia coli was the most prevalent organism (132 277, 73% of positive urine cultures). Antenatal urine cultures and blood tests in pregnancy (hepatitis B, HIV and syphilis) formed a common test combination, consistent with their use in antenatal screening. Conclusions: The greatest burden of microbiology testing in primary care is attributable to urine culture ± microscopy; genital and routine antenatal urine and blood testing are also significant contributors. Further research should focus on the feasibility and impact of POCTs for these specimen types

    Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology

    Get PDF
    Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes,’ such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made

    Treatment of enteric fever (typhoid and paratyphoid fever) with cephalosporins

    Get PDF
    Background Typhoid and paratyphoid (enteric fever) are febrile bacterial illnesses common in many low‐ and middle‐income countries. The World Health Organization (WHO) currently recommends treatment with azithromycin, ciprofloxacin, or ceftriaxone due to widespread resistance to older, first‐line antimicrobials. Resistance patterns vary in different locations and are changing over time. Fluoroquinolone resistance in South Asia often precludes the use of ciprofloxacin. Extensively drug‐resistant strains of enteric fever have emerged in Pakistan. In some areas of the world, susceptibility to old first‐line antimicrobials, such as chloramphenicol, has re‐appeared. A Cochrane Review of the use of fluoroquinolones and azithromycin in the treatment of enteric fever has previously been undertaken, but the use of cephalosporins has not been systematically investigated and the optimal choice of drug and duration of treatment are uncertain. Objectives To evaluate the effectiveness of cephalosporins for treating enteric fever in children and adults compared to other antimicrobials. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, the WHO ICTRP and ClinicalTrials.gov up to 24 November 2021. We also searched reference lists of included trials, contacted researchers working in the field, and contacted relevant organizations. Selection criteria We included randomized controlled trials (RCTs) in adults and children with enteric fever that compared a cephalosporin to another antimicrobial, a different cephalosporin, or a different treatment duration of the intervention cephalosporin. Enteric fever was diagnosed on the basis of blood culture, bone marrow culture, or molecular tests. Data collection and analysis We used standard Cochrane methods. Our primary outcomes were clinical failure, microbiological failure and relapse. Our secondary outcomes were time to defervescence, duration of hospital admission, convalescent faecal carriage, and adverse effects. We used the GRADE approach to assess certainty of evidence for each outcome. Main results We included 27 RCTs with 2231 total participants published between 1986 and 2016 across Africa, Asia, Europe, the Middle East and the Caribbean, with comparisons between cephalosporins and other antimicrobials used for the treatment of enteric fever in children and adults. The main comparisons are between antimicrobials in most common clinical use, namely cephalosporins compared to a fluoroquinolone and cephalosporins compared to azithromycin. Cephalosporin (cefixime) versus fluoroquinolones Clinical failure, microbiological failure and relapse may be increased in patients treated with cefixime compared to fluoroquinolones in three small trials published over 14 years ago: clinical failure (risk ratio (RR) 13.39, 95% confidence interval (CI) 3.24 to 55.39; 2 trials, 240 participants; low‐certainty evidence); microbiological failure (RR 4.07, 95% CI 0.46 to 36.41; 2 trials, 240 participants; low‐certainty evidence); relapse (RR 4.45, 95% CI 1.11 to 17.84; 2 trials, 220 participants; low‐certainty evidence). Time to defervescence in participants treated with cefixime may be longer compared to participants treated with fluoroquinolones (mean difference (MD) 1.74 days, 95% CI 0.50 to 2.98, 3 trials, 425 participants; low‐certainty evidence). Cephalosporin (ceftriaxone) versus azithromycin Ceftriaxone may result in a decrease in clinical failure compared to azithromycin, and it is unclear whether ceftriaxone has an effect on microbiological failure compared to azithromycin in two small trials published over 18 years ago and in one more recent trial, all conducted in participants under 18 years of age: clinical failure (RR 0.42, 95% CI 0.11 to 1.57; 3 trials, 196 participants; low‐certainty evidence); microbiological failure (RR 1.95, 95% CI 0.36 to 10.64, 3 trials, 196 participants; very low‐certainty evidence). It is unclear whether ceftriaxone increases or decreases relapse compared to azithromycin (RR 10.05, 95% CI 1.93 to 52.38; 3 trials, 185 participants; very low‐certainty evidence). Time to defervescence in participants treated with ceftriaxone may be shorter compared to participants treated with azithromycin (mean difference of −0.52 days, 95% CI −0.91 to −0.12; 3 trials, 196 participants; low‐certainty evidence). Cephalosporin (ceftriaxone) versus fluoroquinolones It is unclear whether ceftriaxone has an effect on clinical failure, microbiological failure, relapse, and time to defervescence compared to fluoroquinolones in three trials published over 28 years ago and two more recent trials: clinical failure (RR 3.77, 95% CI 0.72 to 19.81; 4 trials, 359 participants; very low‐certainty evidence); microbiological failure (RR 1.65, 95% CI 0.40 to 6.83; 3 trials, 316 participants; very low‐certainty evidence); relapse (RR 0.95, 95% CI 0.31 to 2.92; 3 trials, 297 participants; very low‐certainty evidence) and time to defervescence (MD 2.73 days, 95% CI −0.37 to 5.84; 3 trials, 285 participants; very low‐certainty evidence). It is unclear whether ceftriaxone decreases convalescent faecal carriage compared to the fluoroquinolone gatifloxacin (RR 0.18, 95% CI 0.01 to 3.72; 1 trial, 73 participants; very low‐certainty evidence) and length of hospital stay may be longer in participants treated with ceftriaxone compared to participants treated with the fluoroquinolone ofloxacin (mean of 12 days (range 7 to 23 days) in the ceftriaxone group compared to a mean of 9 days (range 6 to 13 days) in the ofloxacin group; 1 trial, 47 participants; low‐certainty evidence). Authors' conclusions Based on very low‐ to low‐certainty evidence, ceftriaxone is an effective treatment for adults and children with enteric fever, with few adverse effects. Trials suggest that there may be no difference in the performance of ceftriaxone compared with azithromycin, fluoroquinolones, or chloramphenicol. Cefixime can also be used for treatment of enteric fever but may not perform as well as fluoroquinolones. We are unable to draw firm general conclusions on comparative contemporary effectiveness given that most trials were small and conducted over 20 years previously. Clinicians need to take into account current, local resistance patterns in addition to route of administration when choosing an antimicrobial

    Optimised use of Oxford Nanopore Flowcells for Hybrid Assemblies

    Get PDF
    Hybrid assemblies are highly valuable for studies of Enterobacteriaceae due to their ability to fully resolve the structure of mobile genetic elements, such as plasmids, which are involved in the carriage of clinically important genes (e.g. those involved in antimicrobial resistance/virulence). The widespread application of this technique is currently primarily limited by cost. Recent data have suggested that non-inferior, and even superior, hybrid assemblies can be produced using a fraction of the total output from a multiplexed nanopore [Oxford Nanopore Technologies (ONT)] flowcell run. In this study we sought to determine the optimal minimal running time for flowcells when acquiring reads for hybrid assembly. We then evaluated whether the ONT wash kit might allow users to exploit shorter running times by sequencing multiple libraries per flowcell. After 24 h of sequencing, most chromosomes and plasmids had circularized and there was no benefit associated with longer running times. Quality was similar at 12 h, suggesting that shorter running times are likely to be acceptable for certain applications (e.g. plasmid genomics). The ONT wash kit was highly effective in removing DNA between libraries. Contamination between libraries did not appear to affect subsequent hybrid assemblies, even when the same barcodes were used successively on a single flowcell. Utilizing shorter run times in combination with between-library nuclease washes allows at least 36 Enterobacteriaceae isolates to be sequenced per flowcell, significantly reducing the per-isolate sequencing cost. Ultimately this will facilitate large-scale studies utilizing hybrid assembly, advancing our understanding of the genomics of key human pathogens

    Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission

    Get PDF
    Background: Carbapenemase-producing Enterobacteriaceae (CPE), including KPC-producing Klebsiella pneumoniae (KPC-Kpn), are an increasing threat to patient safety. Objectives: To use WGS to investigate the extent and complexity of carbapenemase gene dissemination in a controlled KPC outbreak. Materials and methods: Enterobacteriaceae with reduced ertapenem susceptibility recovered from rectal screening swabs/clinical samples, during a 3 month KPC outbreak (2013–14), were investigated for carbapenemase production, antimicrobial susceptibility, variable-number-tandem-repeat profile and WGS [short-read (Illumina), long-read (MinION)]. Short-read sequences were used for MLST and plasmid/Tn4401 fingerprinting, and long-read sequence assemblies for plasmid identification. Phylogenetic analysis used IQTree followed by ClonalFrameML, and outbreak transmission dynamics were inferred using SCOTTI. Results: Twenty patients harboured KPC-positive isolates (6 infected, 14 colonized), and 23 distinct KPC-producing Enterobacteriaceae were identified. Four distinct KPC plasmids were characterized but of 20 KPC-Kpn (from six STs), 17 isolates shared a single pKpQIL-D2 KPC plasmid. All isolates had an identical transposon (Tn4401a), except one KPC-Kpn (ST661) with a single nucleotide variant. A sporadic case of KPC-Kpn (ST491) with Tn4401a-carrying pKpQILD2 plasmid was identified 10 months before the outbreak. This plasmid was later seen in two other species and other KPC-Kpn (ST14,ST661) including clonal spread of KPC-Kpn (ST661) from a symptomatic case to nine ward contacts. Conclusions: WGS of outbreak KPC isolates demonstrated blaKPC dissemination via horizontal transposition (Tn4401a), plasmid spread (pKpQIL-D2) and clonal spread (K. pneumoniae ST661). Despite rapid outbreak control, considerable dissemination of blaKPC still occurred among K. pneumoniae and other Enterobacteriaceae, emphasizing its high transmission potential and the need for enhanced control efforts

    Chromosomal Integration of the Klebsiella pneumoniae carbapenemase gene (blaKPC) in Klebsiella Species: Elusive but not Rare

    Get PDF
    Carbapenemase genes in Enterobacteriaceae are mostly described as being plasmid-associated. However, the genetic context of carbapenemase genes is not always confirmed in epidemiological surveys, and the frequency of their chromosomal integration is therefore unknown. A previously sequenced collection of blaKPC-positive Enterobacteriaceae from a single US institution (2007 2012; n=281 isolates, 182 patients) was analyzed to identify chromosomal insertions of Tn4401, the transposon most frequently harboring blaKPC. Using a combination of short- and long-read sequencing, we confirmed five independent chromosomal integration events from 6/182 (3%) patients, corresponding to 15/281 (5%) isolates. Three patients had isolates identified by peri-rectal screening and three had infections which were all successfully treated. When a single copy of blaKPC was in the chromosome one or both of the phenotypic carbapenemase tests were negative. All chromosomally integrated blaKPC were from Klebsiella spp., predominantly K. pneumoniae clonal group (CG)258, even though these represented only a small proportion of the isolates. Integration occurred via IS15-ΔI mediated transposition of a larger, composite region encompassing Tn4401 at one locus of chromosomal integration, seen in the same strain (K. pneumoniae ST340) in two patients. In summary, we identified five independent chromosomal integrations of blaKPC in a large outbreak, demonstrating that this is not a rare event. blaKPC was more frequently integrated into the chromosome of epidemic CG258 K. pneumoniae lineages (ST11, ST258, ST340), and was more difficult to detect by routine phenotypic methods in this context. The presence of chromosomally integrated blaKPC within successful, globally disseminated K. pneumoniae strains is therefore likely underestimated
    corecore