6 research outputs found

    High-Performance Phototransistors Based on PDIF-CN2 Solution-Processed Single Fiber and Multifiber Assembly

    Get PDF
    Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm2 V–1 s–1. Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 103 AW–1, and 5 × 103, respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material’s properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer

    Low-Power/High-Gain Flexible Complementary Circuits Based on Printed Organic Electrochemical Transistors

    Get PDF
    The ability to accurately extract low-amplitude voltage signals is crucial in several fields, ranging from single-use diagnostics and medical technology to robotics and the Internet of Things (IoT). The organic electrochemical transistor (OECT), which features large transconductance values at low operating voltages, is ideal for monitoring small signals. Here, low-power and high-gain flexible circuits based on printed complementary OECTs are reported. This work leverages the low threshold voltage of both p-type and n-type enhancement-mode OECTs to develop complementary voltage amplifiers that can sense voltages as low as 100 \ub5V, with gains of 30.4\ua0dB and at a power consumption of 0.1–2.7 \ub5W (single-stage amplifier). At the optimal operating conditions, the voltage gain normalized to power consumption reaches 169\ua0dB \ub5W−1, which is >50\ua0times larger than state-of-the-art OECT-based amplifiers. In a monolithically integrated two-stage configuration, these complementary voltage amplifiers reach voltage gains of 193\ua0V/V, which are among the highest for emerging complementary metal-oxide-semiconductor-like technologies operating at supply voltages below 1 V. These flexible complementary circuits based on printed OECTs define a new power-efficient platform for sensing and amplifying low-amplitude voltage signals in several emerging beyond-silicon applications

    Current crowding issues on nanoscale planar organic transistors for spintronic applications

    Get PDF
    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices

    Hybrid Copper-Nanowire–Reduced-Graphene-Oxide Coatings: A “Green Solution” Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics

    Get PDF
    This study reports a novel green chemistry approach to assemble copper-nanowires/reduced-graphene-oxide hybrid coatings onto inorganic and organic supports. Such films are robust and combine sheet resistances ( 70%) that are rivalling those of indium–tin oxide. These electrodes are suitable for flexible electronic applications as they show a sheet resistance change of <4% after 10 000 bending cycles at a bending radius of 1.0 cm, when supported on polyethylene terephthalate foils. Significantly, the wet-chemistry method involves the preparation of dispersions in environmentally friendly solvents and avoids the use of harmful reagents. Such inks are processed at room temperature on a wide variety of surfaces by spray coating. As a proof-of-concept, this study demonstrates the successful use of such coatings as electrodes in high-performance electrochromic devices. The robustness of the electrodes is demonstrated by performing several tens of thousands of cycles of device operation. These unique conducting coatings hold potential for being exploited as transparent electrodes in numerous optoelectronic applications such as solar cells, light-emitting diodes, and displays

    Graphene transistors for real-time monitoring molecular self-assembly dynamics

    Get PDF
    Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D

    Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers

    No full text
    Abstract Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics
    corecore