536 research outputs found

    Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices.

    Get PDF
    Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.European Commission through the Graphene Flagship, the ERC Grants SUPRA2DMAT (GA-833707), FUTURE-PRINT (GA-694101), Hetero2D, GSYNCOR, the EU Grant Neurofibres, the Agence Nationale de la Recherche through the Labex projects CSC (ANR-10-LABX-0026 CSC) and NIE (ANR-11-LABX-0058 NIE) within the Investissement d’Avenir program (ANR-10-120 IDEX-0002-02), the International Center for Frontier Research in Chemistry (icFRC), EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016057/1, and the Faraday Institution. The HAADF-STEM characterization was carried out in the Advanced Microscopy Laboratory (Dublin), a Science Foundation Ireland (SFI) supported centre

    Assessment of infectious diseases risks from dental aerosols in real-world settings

    Get PDF
    BACKGROUND: Infectious diseases physicians are leaders in assessing the health risks in a variety of community settings. An understudied area with substantial controversy is the safety of dental aerosols. Previous studies have used in vitro experimental designs and/or indirect measures to evaluate bacteria and viruses from dental surfaces. However, these findings may overestimate the occupational risks of dental aerosols. The purpose of this study was to directly measure dental aerosol composition to assess the health risks for dental healthcare personnel and patients. METHODS: We used a variety of aerosol instruments to capture and measure the bacterial, viral, and inorganic composition of aerosols during a variety of common dental procedures and in a variety of dental office layouts. Equipment was placed in close proximity to dentists during each procedure to best approximate the health risk hazards from the perspective of dental healthcare personnel. Devices used to capture aerosols were set at physiologic respiration rates. Oral suction devices were per the discretion of the dentist. RESULTS: We detected very few bacteria and no viruses in dental aerosols-regardless of office layout. The bacteria identified were most consistent with either environmental or oral microbiota, suggesting a low risk of transmission of viable pathogens from patients to dental healthcare personnel. When analyzing restorative procedures involving amalgam removal, we detected inorganic elements consistent with amalgam fillings. CONCLUSIONS: Aerosols generating from dental procedures pose a low health risk for bacterial and likely viral pathogens when common aerosol mitigation interventions, such as suction devices, are employed

    Unionoida (Mollusca: Margaritiferidae, Unionidae) in Arkansas, Third Status Review

    Get PDF
    We analyzed stream inventories, phylogeographic studies, community and population estimates, life history and reproductive biology research, and suitable habitat investigations conducted from 1997-2008, as well as the Arkansas Natural Heritage Commission mussel database, to update the conservation status for all native freshwater unionoid bivalves thought to occur in Arkansas. Prior to this study, Harris et al. (1997) reviewed the distribution and status of 75 freshwater mussels considered native to Arkansas and ranked 22 species as endangered, threatened or special concern. We now recognize 85 mussel taxa in Arkansas; however, some of those have yet to be described or their nomenclature remains in a state of flux. The previous inclusion of Fusconaia subrotunda (I. Lea 1831) and Obovaria subrotunda (Rafinesque 1820) in the Arkansas native mussel fauna was based on misidentifications. Within the Arkansas mussel fauna, 19 species (22%) are now considered Endangered, 5 species (6%) are ranked as Threatened, 20 species (24%) are of Special Concern, and unfortunately, 1 species has probably been extirpated

    Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry <it>Prunus avium </it>L.</p> <p>Results</p> <p>Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the <it>S</it>-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some <it>S</it>-alleles.</p> <p>Conclusions</p> <p>Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the <it>S</it>-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry.</p

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    Long Term Follow-Up of the Endovascular Trans-Vessel Wall Technique for Parenchymal Access in Rabbit with Full Clinical Integration

    Get PDF
    OBJECTIVE: Endovascular techniques are providing options to surgical/percutaneous cell transplantation methods. Some cells, e.g. insulin producing cells, are not suitable for intra-luminal transplantation and for such cells, other options must be found. We have constructed a "nanocatheter" with a penetrating tip for vessel perforation, thereby creating a working channel for parenchymal access by endovascular technique. To finish the procedure safely, the distal tip is detached to provide a securing plug in the vessel wall defect. MATERIALS AND METHODS: We have performed interventions with full clinical integration in the superior mesenteric artery (SMA), the subclavian artery and the external carotid artery in rabbits. No hemorrhagic- or thromboembolic events occurred during the procedure. Stenosis formation and distal embolisation were analyzed by angiography and macroscopic inspection during autopsy at five, 30 and 80 days. All animals and implanted devices were also evaluated by micro-dissections and histochemical analysis. RESULTS: In this study we show safety data on the trans-vessel wall technique by behavioral, angiographical and histological analysis. No stenosis formation was observed at any of the follow-up time points. No animals or organs have shown any signs of distress due to the intervention. Histological examination showed no signs of hemorrhage, excellent biocompatibility with no inflammation and a very limited fibrous capsule formation around the device, comparable to titanium implants. Further, no histological changes were detected in the endothelia of the vessels subject to intervention. CONCLUSIONS: The trans-vessel wall technique can be applied for e.g. cell transplantations, local substance administration and tissue sampling with low risk for complications during the procedure and low risk for hemorrhage, stenosis development or adverse tissue reactions with an 80 days follow-up time. The benefit should be greatest in organs that are difficult or risky to reach with surgical techniques, such as the pancreas, the CNS and the heart

    Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study

    Get PDF
    BACKGROUND: Tactile object discrimination is an essential human skill that relies on functional connectivity between the neural substrates of motor, somatosensory and supramodal areas. From a theoretical point of view, such distributed networks elude categorical analysis because subtraction methods are univariate. Thus, the aim of this study was to identify the neural networks involved in somatosensory object discrimination using a voxel-based principal component analysis (PCA) of event-related functional magnetic resonance images. METHODOLOGY/PRINCIPAL FINDINGS: Seven healthy, right-handed subjects aged between 22 and 44 years were required to discriminate with their dominant hand the length differences between otherwise identical parallelepipeds in a two-alternative forced-choice paradigm. Of the 34 principal components retained for analysis according to the 'bootstrapped' Kaiser-Guttman criterion, t-tests applied to the subject-condition expression coefficients showed significant mean differences between the object presentation and inter-stimulus phases in PC 1, 3, 26 and 32. Specifically, PC 1 reflected object exploration or manipulation, PC 3 somatosensory and short-term memory processes. PC 26 evinced the perception that certain parallelepipeds could not be distinguished, while PC 32 emerged in those choices when they could be. Among the cerebral regions evident in the PCs are the left posterior parietal lobe and premotor cortex in PC 1, the left superior parietal lobule (SPL) and the right cuneus in PC 3, the medial frontal and orbitofrontal cortex bilaterally in PC 26, and the right intraparietal sulcus, anterior SPL and dorsolateral prefrontal cortex in PC 32. CONCLUSIONS/SIGNIFICANCE: The analysis provides evidence for the concerted action of large-scale cortico-subcortical networks mediating tactile object discrimination. Parallel to activity in nodes processing object-related impulses we found activity in key cerebral regions responsible for subjective assessment and validation

    Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: A functional neuroimaging study

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. SUBJECTS/METHODS: In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. RESULTS: Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). CONCLUSIONS: Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.International Journal of Obesity advance online publicatio

    Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity

    Get PDF
    The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum
    • …
    corecore