2,662 research outputs found

    2002 Survey of Rhode Island Law: Cases: Antitrust

    Get PDF

    IMAT graphics manual

    Get PDF
    The Integrated Multidisciplinary Analysis Tool (IMAT) consists of a menu driven executive system coupled with a relational database which links commercial structures, structural dynamics and control codes. The IMAT graphics system, a key element of the software, provides a common interface for storing, retrieving, and displaying graphical information. The IMAT Graphics Manual shows users of commercial analysis codes (MATRIXx, MSC/NASTRAN and I-DEAS) how to use the IMAT graphics system to obtain high quality graphical output using familiar plotting procedures. The manual explains the key features of the IMAT graphics system, illustrates their use with simple step-by-step examples, and provides a reference for users who wish to take advantage of the flexibility of the software to customize their own applications

    A lightweight, high output soil sampler

    Get PDF
    Sampler is useful on or under earth's surface or on sea bottom. Larger sample amount is obtained relative to sampler size and weight and limited particle size sample material is continuously delivered. Silicone rubber linear in transport tube nearly eliminates grinding or particulate processing during sampling, and reduces required torque

    Dehydration of propan-2-ol on y zeolites

    Get PDF

    Editorial: Putting prevention back on the agenda

    Get PDF

    Landscape genetics reveal broad and fine‐scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota

    Get PDF
    Prehistoric climate and landscape features play large roles structuring wildlife populations. The amphibians of the northern Great Plains of North America present an opportunity to investigate how these factors affect colonization, migration, and current population genetic structure. This study used 11 microsatellite loci to genotype 1,230 northern leopard frogs (Rana pipiens) from 41 wetlands (30 samples/wetland) across North Dakota. Genetic structure of the sampled frogs was evaluated using Bayesian and multivariate clustering methods. All analyses produced concordant results, identifying a major east–west split between two R. pipiens population clusters separated by the Missouri River. Substructuring within the two major identified population clusters was also found. Spatial principal component analysis (sPCA) and variance partitioning analysis identified distance, river basins, and the Missouri River as the most important landscape factors differentiating R. pipiens populations across the state. Bayesian reconstruction of coalescence times suggested the major east– west split occurred ~13–18 kya during a period of glacial retreat in the northern Great Plains and substructuring largely occurred ~5–11 kya during a period of extreme drought cycles. A range‐wide species distribution model (SDM) for R. pipiens was developed and applied to prehistoric climate conditions during the Last Glacial Maximum (21 kya) and the mid‐Holocene (6 kya) from the CCSM4 climate model to identify potential refugia. The SDM indicated potential refugia existed in South Dakota or further south in Nebraska. The ancestral populations of R. pipiens in North Dakota may have inhabited these refugia, but more sampling outside the state is needed to reconstruct the route of colonization. Using microsatellite genotype data, this study determined that colonization from glacial refugia, drought dynamics in the northern Great Plains, and major rivers acting as barriers to gene flow were the defining forces shaping the regional population structure of R. pipiens in North Dakota
    corecore