704 research outputs found

    Evaluation of feasibility of measuring EHD film thickness associated with cryogenic fluids

    Get PDF
    The feasibility of measuring elastohydrodynamic (EHD) films as formed with a cryogenic (LN2) fluid is evaluated. Modifications were made to an existing twin disk EHD apparatus to allow for disk lubrication with liquid nitrogen. This disk apparatus is equipped with an X-ray system for measuring the thickness of any lubricant film that is formed between the disks. Several film thickness experiments were conducted with the apparatus which indicate that good lubrication films are filmed with LN2. In addition to the film thickness studies, failure analyses of three bearings were conducted. The HPOTP turbine end bearings had experienced axial loads of 36,000 to 44,000 N (8,000 to 10,000 lb). High continuous radial loads were also experienced, which were most likely caused by thermal growth of the inner race. The resulting high internal loads caused race spalling and ball wear to occur

    Measurements of elastohydrodynamic film thickness, wear and tempering behavior of high pressure oxygen turbopump bearings

    Get PDF
    The reusable design of the Space Shuttle requires a target life of 7.5 hours for the turbopumps of the Space Shuttle main engine (SSME). This large increase from the few hundred seconds required in single-use rockets has caused various problems with the bearings of the turbopumps. The berings of the high pressure oxygen turbopump (HPOTP) were of particular concern because of wear, spalling, and cage failures at service time well below the required 7.5 hours. Lubrication and wear data were developed for the bearings. Since the HPOTP bearings operate in liquid oxygen, conventional liquid lubricants cannot be applied. Therefore, solid lubricant coatings and lubricant transfer from the polytetrafluorethylene (FTFE) cage were the primary lubrication approaches for the bearings. Measurements were made using liquid nitrogen in a rolling disk machine to determine whether usable elastohydrodynamic films could be generated to assist in the bearing lubrication

    Evaluation of outer race tilt and lubrication on ball wear and SSME bearing life reductions

    Get PDF
    Several aspects of the SSME bearing operation were evaluated. The possibility of elastohydrodynamics (EHD) lubrication with a cryogenic fluid was analyzed. Films as thick as .61 microns were predicted with one theory which may be thick enough to provide hydrodynamic support. The film formation, however, is heavily dependent on good surface finish and a low bulk bearing temperature. Bearing dynamics to determine if the radial stiffness of a bearing which are dependent on bearing misalignment were analyzed. Four ball tests were conducted at several environmental conditions from an LN2 bath to 426 C in air. Surface coatings and ball materials are evaluated. Severe wear and high friction are measured for all ball materials except when the balls have surface lubricant coatings

    Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry

    Get PDF
    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4), with analysis by two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS). The sensitivity and resolving power of GC×GC/TOFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measure ments for 722 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds detected from individual burns ranged from 129 to 474, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggesting that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, eleven sesquiterpenes were detected and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation

    Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry

    Get PDF
    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4) and analyzed by two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-ToFMS). The sensitivity and resolving power of GC x GC-ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements from 708 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds meeting the peak selection criteria ranged from 129 to 474 among individual burns, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggested that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, 11 sesquiterpenes were deteched and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation

    A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Get PDF
    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably

    Tracing molybdenum attenuation in mining environments using molybdenum stable isotopes

    Get PDF
    Molybdenum contamination is a concern in mining regions worldwide. Better understanding of processes controlling Mo mobility in mine wastes is critical for assessing potential impacts and developing water-quality management strategies associated to this element. Here, we used Mo stable isotope (δ98/95Mo) analyses to investigate geochemical controls on Mo mobility within a tailings management facility (TMF) featuring oxic and anoxic environments. These isotopic analyses were integrated with X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and aqueous chemical data. Dissolved Mo concentrations were inversely correlated with δ98/95Mo values such that enrichment of heavy Mo isotopes in solution reflected attenuation processes. Inner-sphere complexation of Mo(VI) with ferrihydrite was the primary driver of Mo removal and was accompanied by a circa 1 ‰ isotope fractionation. Limited Mo attenuation and isotope fractionation was observed in Fe(II)- and Mo-rich anoxic TMF seepage, while attenuation and isotope fractionation were greatest during discharge and oxidation of this seepage after discharge into a pond where Fe-(oxyhydr)oxide precipitation promoted Mo sorption. Overall, this study highlights the role of sorption onto Fe-(oxyhydr)oxides in attenuating Mo in oxic environments, a process which can be traced by Mo isotope analyses

    Winter weather and lake-watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of ice-covered lakes

    Get PDF
    While decreasing occurrence and duration of lake ice cover is well-documented, biogeochemical dynamics in frozen lakes remain poorly understood. Here, we interpret winter physical and biogeochemical time series from eutrophic Missisquoi Bay (MB) and hyper-eutrophic Shelburne Pond (SP) to describe variable drivers of under ice biogeochemistry in systems of fundamentally different lake-watershed physical configurations (lake area, lake : watershed area). The continuous cold of the 2015 winter drove the MB sediment-water interface to the most severe and persistent suboxic state ever documented at this site, promoting the depletion of redox-sensitive phases in sediments, and an expanding zone of bottom water enriched in reactive species of Mn, Fe, and P. In this context, lake sediment and water column inventories of reactive chemical species were sensitive to the severity and persistence of subfreezing temperatures. During thaws, event provenance and severity impact lake thermal structure and mixing, water column enrichment in P and Fe, and thaw capability to suppress redox front position and internal chemical loading. Nearly identical winter weather manifest differently in nearby SP, where the small surface and watershed areas promoted a warmer, less stratified water column and active phytoplankton populations, impacting biogeochemical dynamics. In SP, Fe and P behavior under ice were decoupled due to active biological cycling, and thaw impacts were different in distribution and composition due to SP's physical structure and related antecedent conditions. We find that under ice biogeochemistry is highly dynamic in both time and space and sensitive to a variety of drivers impacted by climate change

    A study of facilities and fixtures for testing of a high speed civil transport wing component

    Get PDF
    A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions

    Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides

    Get PDF
    The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ∼24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ∼20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ∼30 days.Universidad Nacional De La Plat
    • …
    corecore