40 research outputs found

    Rigidly rotating dust solutions depending upon harmonic functions

    Full text link
    We write down the relevant field equations for a stationary axially symmetric rigidly rotating dust source in such a way that the general solution depends upon the solution of an elliptic equation and upon harmonic functions. Starting with the dipole Bonnor solution, we built an asymptotically flat solution with two curvature singularities on the rotational axis with diverging mass. Apart from the two point singularities on the axis, the metric is regular everywhere. Finally, we study a non-asymptotically flat solution with NUT charge and a massless ring singularity, but with a well-defined mass-energy expression.Comment: typos corrected, final version published in Class. Quantum Gra

    Axisymmetric Stationary Solutions as Harmonic Maps

    Full text link
    We present a method for generating exact solutions of Einstein equations in vacuum using harmonic maps, when the spacetime possesses two commutating Killing vectors. This method consists in writing the axisymmetric stationry Einstein equations in vacuum as a harmonic map which belongs to the group SL(2,R), and decomposing it in its harmonic "submaps". This method provides a natural classification of the solutions in classes (Weil's class, Lewis' class etc).Comment: 17 TeX pages, one table,( CINVESTAV- preprint 12/93

    Chronology protection in stationary three-dimensional spacetimes

    Full text link
    We study chronology protection in stationary, rotationally symmetric spacetimes in 2+1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either exist all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in anti-de Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.Comment: 20 pages. V2: minor corrections, Outlook expanded, references added, published versio

    The Petrov and Kaigorodov-Ozsv\'ath Solutions: Spacetime as a Group Manifold

    Get PDF
    The Petrov solution (for Λ=0\Lambda=0) and the Kaigorodov-Ozsv\'ath solution (for Λ<0\Lambda<0) provide examples of vacuum solutions of the Einstein equations with simply-transitive isometry groups. We calculate the boundary stress-tensor for the Kaigorodov-Ozsv\'ath solution in the context of the adS/CFT correspondence. By giving a matrix representation of the Killing algebra of the Petrov solution, we determine left-invariant one-forms on the group. The algebra is shown to admit a two-parameter family of linear deformations a special case of which gives the algebra of the Kaigorodov-Ozsv\'ath solution. By applying the method of non-linear realisations to both algebras, we obtain a Lagrangian of Finsler type from the general first-order action in both cases. Interpreting the Petrov solution as the exterior solution of a rigidly rotating dust cylinder, we discuss the question of creation of CTCs by spinning up such a cylinder. We show geodesic completeness of the Petrov and Kaigorodov-Ozsv\'ath solutions and determine the behaviour of geodesics in these spacetimes. The holonomy groups were shown to be given by the Lorentz group in both cases.Comment: 25 pages (latex), 3 figures, corrected a few minor error

    Holographic Protection of Chronology in Universes of the Godel Type

    Get PDF
    We analyze the structure of supersymmetric Godel-like cosmological solutions of string theory. Just as the original four-dimensional Godel universe, these solutions represent rotating, topologically trivial cosmologies with a homogeneous metric and closed timelike curves. First we focus on "phenomenological" aspects of holography, and identify the preferred holographic screens associated with inertial comoving observers in Godel universes. We find that holography can serve as a chronology protection agency: The closed timelike curves are either hidden behind the holographic screen, or broken by it into causal pieces. In fact, holography in Godel universes has many features in common with de Sitter space, suggesting that Godel universes could represent a supersymmetric laboratory for addressing the conceptual puzzles of de Sitter holography. Then we initiate the investigation of "microscopic" aspects of holography of Godel universes in string theory. We show that Godel universes are T-dual to pp-waves, and use this fact to generate new Godel-like solutions of string and M-theory by T-dualizing known supersymmetric pp-wave solutions.Comment: 35 pages, 5 figures. v2: typos corrected, references adde

    On rigidly rotating perfect fluid cylinders

    Full text link
    The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.Comment: 10 pages, Revtex (galley

    The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine

    Get PDF
    We study the propagator of a non-relativistic, non-interacting particle in any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an external, flat spacetime in which two spatial regions, VV_- at time tt_- and V+V_+ at time t+t_+, are connected by two temporal wormholes, one leading from the past side of VV_- to t the future side of V+V_+ and the other from the past side of V+V_+ to the future side of VV_-. We express the propagator explicitly in terms of those for ordinary, flat spacetime and for the two wormholes; and from that expression we show that the propagator satisfies completeness and unitarity in the initial and final ``chronal regions'' (regions without closed timelike curves) and its propagation from the initial region to the final region is unitary. However, within the time machine it satisfies neither completeness nor unitarity. We also give an alternative proof of initial-region-to-final-region unitarity based on a conserved current and Gauss's theorem. This proof can be carried over without change to most any non-relativistic time-machine spacetime; it is the non-relativistic version of a theorem by Friedman, Papastamatiou and Simon, which says that for a free scalar field, quantum mechanical unitarity follows from the fact that the classical evolution preserves the Klein-Gordon inner product

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.

    Can the Universe Create Itself?

    Full text link
    The question of first-cause has troubled philosophers and cosmologists alike. Now that it is apparent that our universe began in a Big Bang explosion, the question of what happened before the Big Bang arises. Inflation seems like a very promising answer, but as Borde and Vilenkin have shown, the inflationary state preceding the Big Bang must have had a beginning also. Ultimately, the difficult question seems to be how to make something out of nothing. This paper explores the idea that this is the wrong question --- that that is not how the Universe got here. Instead, we explore the idea of whether there is anything in the laws of physics that would prevent the Universe from creating itself. Because spacetimes can be curved and multiply connected, general relativity allows for the possibility of closed timelike curves (CTCs). Thus, tracing backwards in time through the original inflationary state we may eventually encounter a region of CTCs giving no first-cause. This region of CTCs, may well be over by now (being bounded toward the future by a Cauchy horizon). We illustrate that such models --- with CTCs --- are not necessarily inconsistent by demonstrating self-consistent vacuums for Misner space and a multiply connected de Sitter space in which the renormalized energy-momentum tensor does not diverge as one approaches the Cauchy horizon and solves Einstein's equations. We show such a Universe can be classically stable and self-consistent if and only if the potentials are retarded, giving a natural explanation of the arrow of time. Some specific scenarios (out of many possible ones) for this type of model are described. For example: an inflationary universe gives rise to baby universes, one of which turns out to be itself. Interestingly, the laws of physics may allow the Universe to be its own mother.Comment: 48 pages, 8 figure
    corecore