2,752 research outputs found

    3C 48: Stellar Populations and the Kinematics of Stars and Gas in the Host Galaxy

    Get PDF
    We present deep Keck LRIS spectroscopy of the host galaxy of 3C 48. Our observations at various slit positions sample the different luminous components near the quasar, including the apparent tidal tail to the NW and several strong emission line regions. By fitting Bruzual & Charlot (1996) population synthesis models to our spectra, we obtain ages for the most recent major episodes of star formation in various parts of the host galaxy covered by our slits. There is vigorous current star formation in regions just NE and SE of the quasar and post-starburst regions with ages up to ~10^8 years in other parts of the host galaxy, but most of the NW tidal tail shows no sign of significant recent star formation. We use these model fits, together with the kinematics of the stars and gas, to outline a plausible evolutionary history for the host galaxy, its recent starburst activity, the triggering of the quasar, and the interaction of the radio jet with the ambient gas. There is strong evidence that the 3C 48 host is an ongoing merger, and that it is probably near the peak of its starburst activity. Nevertheless, the quasar itself seems to suffer little extinction, perhaps because we are viewing it along a particularly favorable line-of-sight.Comment: 27 pages plus 11 figures (7 postscript, 4 gif). Postscript version including figures (1840 kb) available at http://www.ifa.hawaii.edu/~canaguby/preprints.html . Accepted for publication in Ap

    A Disk Galaxy of Old Stars at z ~ 2.5

    Full text link
    We describe observations of a galaxy in the field of the z=2.483z=2.483 radio galaxy 4C 23.56, photometrically selected to have a spectral-energy distribution consistent with an old stellar population at the redshift of the radio galaxy. Exploration of redshift--stellar-population-reddening constraints from the photometry indicates that the galaxy is indeed at a redshift close to that of 4C23.56, that the age of the most recent significant star formation is roughly >~2 Gyr, and that reddening is fairly modest, with more reddening required for the younger end of stellar age range. From analysis of a deep adaptive-optics image of the galaxy, we find that an r^1/4-law profile, common for local spheroidal galaxies, can be excluded quite strongly. On the other hand, a pure exponential profile fits remarkably well, while the best fit is given by a Sersic profile with index n=1.49. Reconstruction of the two-dimensional form of the galaxy from the best-fit model is consistent with a disk galaxy with neither a significant bulge component nor gross azimuthal structure. The assembly of roughly 2L* of old stars into such a configuration this early in the history of the universe is not easily explainable by any of the currently popular scenarios for galaxy formation. A galaxy with these properties would seem to require smooth but rapid infall of the large mass of gas involved, followed by a burst of extremely vigorous and efficient star formation in the resulting disk.Comment: 8 pages, 6 figures, emulateapj.sty, accepted for publication in The Astrophysical Journa

    The Extended Emission-Line Region of 4C 37.43

    Full text link
    We have explored the nature of the extended emission-line region around the z=0.37 quasar 4C 37.43, using extensive ground-based and HST imaging and spectroscopy. The velocity field of the ionized gas shows gradual gradients within components but large jumps between components, with no obvious global organization. The HST [O III] image shows radial linear features on the east side of the QSO that appear to mark the edges of an ionization cone. Concentrating on the bright emission peaks ~4\arcsec$ east of the quasar, we find through modeling that we require at least two density regimes contributing significantly to the observed emission-line spectrum: one with a density of ~2 cm^-3, having essentially unity filling factor, and one with a density of ~500 cm^-3, having a very small (~10^-5) filling factor. Because the temperatures of these two components are similar, they cannot be in pressure equilibrium, and there is no obvious source of confinement for the dense regions. We estimate that the dense regions will dissipate on timescales <~10^4 years and therefore need to be continuously regenerated, most likely by shocks. Because we know that some QSOs, at least, begin their lives in conjunction with merger-driven massive starbursts in their host galaxies, an attractive interpretation is that the extended emission region comprises gas that has been expelled as a result of tidal forces during the merger and is now being shocked by the galactic superwind from the starburst. This picture is supported by the observed distribution of the ionized gas, the presence of velocities ranging up to ~700 km s^{-1}, and the existence of at least two QSOs having similarly luminous and complex extended emission regions that are known to have ultra-luminous IR galaxy hosts with current or recent starbursts.Comment: 22 pages, incl. 7 figures; to be published in The Astrophysical Journal, 572 (June 20, 2002 issue

    GMRT detection of HI 21 cm associated absorption towards the z=1.2 red quasar 3C 190

    Get PDF
    We report the GMRT detection of associated HI 21 cm-line absorption in the z=1.1946 red quasar 3C 190. Most of the absorption is blue-shifted with respect to the systemic redshift. The absorption, at \sim 647.7 MHz, is broad and complex, spanning a velocity width of \sim 600 \kms. Since the core is self-absorbed at this frequency, the absorption is most likely towards the hotspots. Comparison of the radio and deep optical images reveal linear filaments in the optical which overlap with the brighter radio jet towards the south-west. We therefore suggest that most of the HI 21 cm-line absorption could be occurring in the atomic gas shocked by the south-west jet.Comment: 8 pages, 1 fugure. To appear in Journal of Astrophysics and Astronom

    Necessity of Superposition of Macroscopically Distinct States for Quantum Computational Speedup

    Full text link
    For quantum computation, we investigate the conjecture that the superposition of macroscopically distinct states is necessary for a large quantum speedup. Although this conjecture was supported for a circuit-based quantum computer performing Shor's factoring algorithm [A. Ukena and A. Shimizu, Phys. Rev. A69 (2004) 022301], it needs to be generalized for it to be applicable to a large class of algorithms and/or other models such as measurement-based quantum computers. To treat such general cases, we first generalize the indices for the superposition of macroscopically distinct states. We then generalize the conjecture, using the generalized indices, in such a way that it is unambiguously applicable to general models if a quantum algorithm achieves exponential speedup. On the basis of this generalized conjecture, we further extend the conjecture to Grover's quantum search algorithm, whose speedup is large but quadratic. It is shown that this extended conjecture is also correct. Since Grover's algorithm is a representative algorithm for unstructured problems, the present result further supports the conjecture.Comment: 18 pages, 5 figures. Fixed typos throughout the manuscript. This version has been publishe

    Keck spectroscopy and Spitzer Space Telescope analysis of the outer disk of the Triangulum Spiral Galaxy M33

    Get PDF
    In an earlier study of the spiral galaxy M33, we photometrically identified arcs or outer spiral arms of intermediate age (0.6 Gyr - 2 Gyr) carbon stars precisely at the commencement of the HI-warp. Stars in the arcs were unresolved, but were likely thermally-pulsing asymptotic giant branch carbon stars. Here we present Keck I spectroscopy of seven intrinsically bright and red target stars in the outer, northern arc in M33. The target stars have estimated visual magnitudes as faint as V \sim 25 mag. Absorption bands of CN are seen in all seven spectra reported here, confirming their carbon star status. In addition, we present Keck II spectra of a small area 0.5 degree away from the centre of M33; the target stars there are also identified as carbon stars. We also study the non-stellar PAH dust morphology of M33 secured using IRAC on board the Spitzer Space Telescope. The Spitzer 8 micron image attests to a change of spiral phase at the start of the HI warp. The Keck spectra confirm that carbon stars may safely be identified on the basis of their red J-K_s colours in the outer, low metallicity disk of M33. We propose that the enhanced number of carbon stars in the outer arms are an indicator of recent star formation, fueled by gas accretion from the HI-warp reservoir.Comment: 9 pages, 5 figures, accepted in A&

    Reverse quantum state engineering using electronic feedback loops

    Get PDF
    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and in particular a single-electron transistor. We provide a general scheme to stabilize pure states in the quantum system and employ an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013

    Charmed meson decay constants in three-flavor lattice QCD

    Full text link
    We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV for the D_s meson.Comment: note added on recent CLEO measurement; PRL versio
    corecore