3,732 research outputs found

    A Common Origin for Quasar Extended Emission-Line Regions and Their Broad-Line Regions

    Full text link
    We present a correlation between the presence of luminous extended emission-line regions (EELRs) and the metallicity of the broad-line regions (BLRs) of low-redshift quasars. The result is based on ground-based [O III] 5007 narrow-band imaging and Hubble Space Telescope UV spectra of 12 quasars at 0.20 < z < 0.45. Quasars showing luminous EELRs have low-metallicity BLRs (Z < 0.6 Z_Solar), while the remaining quasars show typical metal-rich gas (Z > Z_Solar). Previous studies have shown that EELRs themselves also have low metallicities (Z < 0.5 Z_Solar). The correlation between the occurrence of EELRs and the metallicity of the BLRs, strengthened by the sub-Solar metallicity in both regions, indicates a common external origin for the gas, almost certainly from the merger of a gas-rich galaxy. Our results provide the first direct observational evidence that the gas from a merger can indeed be driven down to the immediate vicinity (< 1 pc) of the central black hole.Comment: Accepted for publication in ApJ Letters. 4 pages, 1 figure, 1 tabl

    Searching for intrinsic charm in the proton at the LHC

    Get PDF
    Despite rather long-term theoretical and experimental studies, the hypothesis of the non-zero intrinsic (or valence-like) heavy quark component of the proton distribution functions has not yet been confirmed or rejected. The LHC with pppp-collisions at s=\sqrt{s}= 7--14 TeV will obviously supply extra unique information concerning the above-mentioned component of the proton. To use the LHC potential, first of all, one should select the parton-level (sub)processes (and final-state signatures) that are most sensitive to the intrinsic heavy quark contributions. To this end inclusive production of c(b)c(b)-jets accompanied by photons is considered. On the basis of the performed theoretical study it is demonstrated that the investigation of the intrinsic heavy quark contributions looks very promising at the LHC in processes such as ppγ+c(b)+Xpp\rightarrow \gamma+ c(b)+X.Comment: 13 pages, 6 figure

    Risk of cancer following primary total hip replacement or primary resurfacing arthroplasty of the hip : A retrospective cohort study in Scotland

    Get PDF
    Acknowledgements: We are grateful to Lee Barnsdale, Doug Clark, and Richard Dobbie for advice and assistance with data preparation before analysis, and to the three anonymous referees for their helpful comments and suggestions.Peer reviewedPublisher PD

    Tensor polarizability and dispersive quantum measurement of multilevel atoms

    Get PDF
    Optimally extracting information from measurements performed on a physical system requires an accurate model of the measurement interaction. Continuously probing the collective spin of an Alkali atom cloud via its interaction with an off-resonant optical probe is an important example of such a measurement where realistic modeling at the quantum level is possible using standard techniques from atomic physics. Typically, however, tutorial descriptions of this technique have neglected the multilevel structure of realistic atoms for the sake of simplification. In this paper we account for the full multilevel structure of Alkali atoms and derive the irreducible form of the polarizability Hamiltonian describing a typical dispersive quantum measurement. For a specific set of parameters, we then show that semiclassical predictions of the theory are consistent with our experimental observations of polarization scattering by a polarized cloud of laser-cooled Cesium atoms. We also derive the signal-to-noise ratio under a single measurement trial and use this to predict the rate of spin-squeezing with multilevel Alkali atoms for arbitrary detuning of the probe beam.Comment: Significant corrections to theory and data. Full quality figures and other information available from http://minty.caltech.edu/papers.ph

    A Kiloparsec-Scale Binary Active Galactic Nucleus Confirmed by the Expanded Very Large Array

    Full text link
    We report the confirmation of a kpc-scale binary active galactic nucleus (AGN) with high-resolution radio images from the Expanded Very Large Array (EVLA). SDSS J150243.1+111557 is a double-peaked [O III] AGN at z = 0.39 selected from the Sloan Digital Sky Survey. Our previous near-infrared adaptive optics imaging reveals two nuclei separated by 1.4" (7.4 kpc), and our optical integral-field spectroscopy suggests that they are a type-1--type-2 AGN pair. However, these data alone cannot rule out the single AGN scenario where the narrow emission-line region associated with the secondary is photoionized by the broad-line AGN in the primary. Our new EVLA images at 1.4, 5.0, and 8.5 GHz show two steep-spectrum compact radio sources spatially coincident with the optical nuclei. The radio power of the type-2 AGN is an order-of-magnitude in excess of star-forming galaxies with similar extinction-corrected [O II] 3727 luminosities, indicating that the radio emission is powered by accretion. Therefore, SDSS J150243.1+111557 is one of the few confirmed kpc-scale binary AGN systems. Spectral-energy-distribution modeling shows that SDSS J150243.1+111557 is a merger of two ~10^{11} M_sun galaxies. With both black hole masses around 10^8 Msun, the AGNs are accreting at ~10 times below the Eddington limit.Comment: ApJL accepted. 6 pages, 3 figures, 1 tabl

    Near Infrared Adaptive Optics Imaging of QSO Host Galaxies

    Get PDF
    We report near-infrared (primarily H-band) adaptive optics (AO) imaging with the Gemini-N and Subaru Telescopes, of a representative sample of 32 nearby (z<0.3) QSOs selected from the Palomar-Green (PG) Bright Quasar Survey (BQS), in order to investigate the properties of the host galaxies. 2D modeling and visual inspection of the images shows that ~36% of the hosts are ellipticals, \~39% contain a prominent disk component, and ~25% are of undetermined type. 30% show obvious signs of disturbance. The mean M_H(host) = -24.82 (2.1L_H*), with a range -23.5 to -26.5 (~0.63 to 10 L_H*). At <L_H*, all hosts have a dominant disk component, while at >2 L_H* most are ellipticals. "Disturbed" hosts are found at all M_H(host), while "strongly disturbed" hosts appear to favor the more luminous hosts. Hosts with prominent disks have less luminous QSOs, while the most luminous QSOs are almost exclusively in ellipticals or in mergers (which presumably shortly will be ellipticals). At z<0.13, where our sample is complete at B-band, we find no clear correlation between M_B(QSO) and M_H(host). However, at z>0.15, the more luminous QSOs (M_B<-24.7), and 4/5 of the radio-loud QSOs, have the most luminous H-band hosts (>7L_H*), most of which are ellipticals. Finally, we find a strong correlation between the "infrared-excess", L_IR/L_BB, of QSOs with host type and degree of disturbance. Disturbed and strongly disturbed hosts and hosts with dominant disks have L_IR/L_BB twice that of non-disturbed and elliptical hosts, respectively. QSOs with "disturbed" and "strongly-disturbed" hosts are also found to have morphologies and mid/far-infrared colors that are similar to what is found for "warm" ultraluminous infrared galaxies, providing further evidence for a possible evolutionary connection between both classes of objects.Comment: 80 pages, accepted for publication in ApJ Supp

    Radio-Selected Binary Active Galactic Nuclei from the Very Large Array Stripe 82 Survey

    Get PDF
    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. But determining the fraction requires a statistical sample of binaries. We have identified kpc-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 square deg covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5" (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the H-alpha-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.Comment: ApJ accepte

    Cosmology with redshift surveys of radio sources

    Get PDF
    We use the K-z relation for radio galaxies to illustrate why it has proved difficult to obtain definitive cosmological results from studies based entirely on catalogues of the brightest radio sources, e.g. 3C. To improve on this situation we have been undertaking redshift surveys of complete samples drawn from the fainter 6C and 7C radio catalogues. We describe these surveys, and illustrate the new studies they are allowing. We also discuss our `filtered' 6C redshift surveys: these have led to the discovery of a radio galaxy at z=4.4, and are sensitive to similar objects at higher redshift provided the space density of these objects is not declining too rapidly with z. There is currently no direct evidence for a sharp decline in the space density of radio galaxies for z > 4, a result only barely consistent with the observed decline of flat-spectrum radio quasars.Comment: 8 pages Latex, To appear in the "Cosmology with the New Radio Surveys" Conference - Tenerife 13-15 January 199

    Rib Fracture Fixation Restores Inspiratory Volume and Peak Flow in a Full Thorax Human Cadaveric Breathing Model

    Get PDF
    Background: Multiple rib fractures cause significant pain and potential for chest wall instability. Despite an emerging trend of surgical management of flail chest injuries, there are no studies examining the effect of rib fracture fixation on respiratory function. Objectives: Using a novel full thorax human cadaveric breathing model, we sought to explore the effect of flail chest injury and subsequent rib fracture fixation on respiratory outcomes. Patients and Methods: We used five fresh human cadavers to generate negative breathing models in the left thorax to mimic physiologic respiration. Inspiratory volumes and peak flows were measured using a flow meter for all three chest wall states: intact chest, left-sided flail chest (segmental fractures of ribs 3 - 7), and post-fracture open reduction and internal fixation (ORIF) of the chest wall with a pre-contoured rib specific plate fixation system. Results: A wide variation in the mean inspiratory volumes and peak flows were measured between specimens; however, the effect of a flail chest wall and the subsequent internal fixation of the unstable rib fractures was consistent across all samples. Compared to the intact chest wall, the inspiratory volume decreased by 40 ± 19% in the flail chest model (P = 0.04). Open reduction and internal fixation of the flail chest returned the inspiratory volume to 130 ± 71% of the intact chest volumes (P = 0.68). A similar 35 ± 19% decrease in peak flows was seen in the flail chest (P = 0.007) and this returned to 125 ± 71% of the intact chest following ORIF (P = 0.62). Conclusions: Negative pressure inspiration is significantly impaired by an unstable chest wall. Restoring mechanical stability of the fractured ribs improves respiratory outcomes similar to baseline values

    Geometric measure of entanglement and applications to bipartite and multipartite quantum states

    Full text link
    The degree to which a pure quantum state is entangled can be characterized by the distance or angle to the nearest unentangled state. This geometric measure of entanglement, already present in a number of settings (see Shimony 1995 and Barnum and Linden 2001), is explored for bipartite and multipartite pure and mixed states. The measure is determined analytically for arbitrary two-qubit mixed states and for generalized Werner and isotropic states, and is also applied to certain multipartite mixed states. In particular, a detailed analysis is given for arbitrary mixtures of three-qubit GHZ, W and inverted-W states. Along the way, we point out connections of the geometric measure of entanglement with entanglement witnesses and with the Hartree approximation method.Comment: 13 pages, 11 figures, this is a combination of three previous manuscripts (quant-ph/0212030, quant-ph/0303079, and quant-ph/0303158) made more extensive and coherent. To appear in PR
    corecore