We report near-infrared (primarily H-band) adaptive optics (AO) imaging with
the Gemini-N and Subaru Telescopes, of a representative sample of 32 nearby
(z<0.3) QSOs selected from the Palomar-Green (PG) Bright Quasar Survey (BQS),
in order to investigate the properties of the host galaxies. 2D modeling and
visual inspection of the images shows that ~36% of the hosts are ellipticals,
\~39% contain a prominent disk component, and ~25% are of undetermined type.
30% show obvious signs of disturbance. The mean M_H(host) = -24.82 (2.1L_H*),
with a range -23.5 to -26.5 (~0.63 to 10 L_H*). At <L_H*, all hosts have a
dominant disk component, while at >2 L_H* most are ellipticals. "Disturbed"
hosts are found at all M_H(host), while "strongly disturbed" hosts appear to
favor the more luminous hosts. Hosts with prominent disks have less luminous
QSOs, while the most luminous QSOs are almost exclusively in ellipticals or in
mergers (which presumably shortly will be ellipticals). At z<0.13, where our
sample is complete at B-band, we find no clear correlation between M_B(QSO) and
M_H(host). However, at z>0.15, the more luminous QSOs (M_B<-24.7), and 4/5 of
the radio-loud QSOs, have the most luminous H-band hosts (>7L_H*), most of
which are ellipticals. Finally, we find a strong correlation between the
"infrared-excess", L_IR/L_BB, of QSOs with host type and degree of disturbance.
Disturbed and strongly disturbed hosts and hosts with dominant disks have
L_IR/L_BB twice that of non-disturbed and elliptical hosts, respectively. QSOs
with "disturbed" and "strongly-disturbed" hosts are also found to have
morphologies and mid/far-infrared colors that are similar to what is found for
"warm" ultraluminous infrared galaxies, providing further evidence for a
possible evolutionary connection between both classes of objects.Comment: 80 pages, accepted for publication in ApJ Supp