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Despite rather long-term theoretical and experimental study, the hypothesis of the non-zero intrinsic (or
valence-like) heavy quark component of the proton distribution functions has not yet been confirmed or
rejected. The LHC with pp-collisions at

√
s = 7–14 TeV will obviously supply extra unique information

concerning the above-mentioned component of the proton. To use the LHC potential, first of all, one
should select the parton-level (sub)processes (and final-state signatures) that are the most sensitive to the
intrinsic heavy quark contributions. To this end inclusive production of c(b)-jets accompanied by photons
is considered. On the basis of performed theoretical study it is demonstrated that investigation of the
intrinsic heavy quark contributions looks very promising at the LHC in processes like pp → γ + c(b) + X .

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The Large Hadron Collider (LHC) opens up new and unique
kinematical regions with high accuracy for the investigation of the
structure of the proton, in particular for the study of the parton
distribution functions (PDFs). It is well known that the precise
knowledge of the PDFs is very essential for the verification of the
Standard Model and the search for New Physics.

By definition, the PDF fa(x,μ) is a function of the proton mo-
mentum fraction x carried by parton a (quark q or gluon g) at the
momentum transfer scale μ. For small values of μ, corresponding
to long distance scales less than 1/μ0, the PDF currently can-
not be calculated from the first principles of QCD [1]. At μ > μ0
the fa(x,μ) can be obtained by means of solving the perturbative
QCD evolution equations (DGLAP) [2]. At μ < μ0 some progress in
calculation of the PDFs has been achieved within the lattice meth-
ods [1]. The unknown (input for the evolution) functions fa(x,μ0)

usually can be found empirically from some “QCD global analysis”
[3,4] of a large variety of data typically at μ > μ0.

In general, almost all pp processes at LHC energies, includ-
ing Higgs boson production, are sensitive to the charm fc(x,μ)
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or bottom fb(x,μ) PDFs. Nevertheless, within the global analysis
the charm content of the proton at μ ∼ μc and the bottom at
μ ∼ μb are both assumed to be negligible. Here μc and μb are
typical energy scales relevant to the c- and b-quark QCD excitation
in the proton. These heavy quark components arise in the pro-
ton only perturbatively with increases in the Q 2-scale through the
gluon splitting in the DGLAP Q 2 evolution [2]. Direct measure-
ment of open charm and open bottom production in deep inelastic
processes (DIS) confirms the perturbative origin of heavy quark fla-
vors [5]. However, modern descriptions of these experimental data
are not sensitive enough to the above-mentioned perturbative sea
heavy quark distributions at relatively large x values (x > 0.1).

Analyzing hadroproduction of so-called leading hadrons Brod-
sky et al. [6,7] (about thirty years ago) has assumed co-existing
of extrinsic and intrinsic contributions to the quark–gluon structure
of the proton. The extrinsic (or ordinary) quarks and gluons are
generated on a short time scale associated with large-transverse-
momentum processes. Their distribution functions satisfy the stan-
dard QCD evolution equations. The intrinsic quarks and gluons exist
over a time scale which is independent of any probe momen-
tum transfer. They can be associated with a bound-state (zero-
momentum transfer regime) hadron dynamics and one believes
they have a nonperturbative origin.

It was shown in [7] that the existence of intrinsic heavy quark
pairs cc̄, and bb̄ within the proton state can be due to the virtue
of gluon-exchange and vacuum-polarization graphs. On this basis,
within the MIT bag model [8], the probability to find a five-quark
component |uudcc̄〉 bound within the nucleon bag is non-zero and
can be about 1–2%.
.
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Initially in [6,7] S. Brodsky and coauthors proposed the exis-
tence of the 5-quark state |uudcc̄〉 in the proton. Later some other
models were developed. One of them considered a quasi-two-body
state D̄0(uc̄)Λ̄+

c (udc) in the proton [9]. In order to not contradict
the DIS HERA data the probability to find the intrinsic charm (IC)
in the proton (the weight of the relevant Fock state in the proton)
was found to be less than 3.5% [9–12]. The probability of find-
ing an intrinsic bottom state (IB) in the proton is suppressed by a
factor of m2

c /m2
b � 0.1 [13], where mc � 1.3 GeV and mb = 4.2 GeV

are the current masses of the charm and bottom quarks. Therefore,
the experimental search for a possible IC signal in pp collisions at
the LHC energies is more promising than the search for the IB con-
tribution.

If the distributions of the intrinsic charm or bottom in the pro-
ton are hard enough and similar in the shape to the valence quark
distributions (i.e. have valence-like form), then one expects the
production of the charmed (bottom) mesons or charmed (bottom)
baryons in the fragmentation region to be similar to the production
of pions or nucleons (from the light quarks). However, the yield of
this production depends on the probability to find intrinsic charm
or bottom in the proton, but this amount looks too small. The PDFs
that include the IC contribution in the proton have already been
used in perturbative QCD calculations in [9–12].

The probability distribution for the 5-quark state (|uudcc̄〉) in
the light-cone description of the proton was first calculated in [6].
The general form for this distribution calculated within the light-
cone dynamics in the so-called BHPS model [6,7] can be written
as [11]

P (x1, . . . , x5) = N5δ

(
1 −

5∑
j=1

x j

)(
m2

p −
5∑

j=1

m2
j

x j

)−2

, (1)

where x j is the momentum fraction of the parton, m j is its mass
and mp is the proton mass. Neglecting the light quark (u,d, s)
masses and the proton mass in comparison to the c-quark mass
and integrating (1) over dx1 · · ·dx4 one can get the probability to
find the intrinsic charm with momentum fraction x5 in the pro-
ton [11]:

P (x5) = 1

2
Ñ5x2

5

[
1

3
(1 − x5)

(
1 + 10x5 + x2

5

)
− 2x5(1 + x5) ln(x5)

]
, (2)

where Ñ5 = N5/m4
4,5, m4,5 = mc = mc̄ , the normalization constant

N5 determines some probability w IC to find the Fock state |uudcc̄〉
in the proton. Fig. 1 illustrates the IC contribution in comparison
to the conventional sea charm quark distribution in the proton.

The solid line in Fig. 1 shows the standard perturbative sea
charm density distribution xcrg(x) (ordinary sea charm) in the pro-
ton from CTEQ6.6M [12] as a function of x at Q 2 = 1000 GeV2. The
dashed curve in Fig. 1 is the sum of the intrinsic charm density
xcin(x) from CTEQ6.6C2 BHPS with the IC probability w IC = 3.5%
and xcrg(x) at the same Q 2 [12]. One can see from Fig. 1 that
the IC distribution (with w IC = 3.5%) given by (2) has a rather
visible enhancement at x ∼ 0.2–0.5 and this distribution is much
larger (by an order and more of magnitude) than the sea (ordinary)
charm density distribution in the proton.

As a rule, the gluons and sea quarks play the key role in hard
processes of open charm hadroproduction. Simultaneously, due to
the nonperturbative intrinsic heavy quark components one can ex-
pect some excess of these heavy quark PDFs over the ordinary
sea quark PDFs at x > 0.1. Therefore the existence of this in-
trinsic charm component can lead to some enhancement in the
Fig. 1. Distributions of the charm quark in the proton at Q 2 = 1000 GeV2. The
solid line is the standard perturbative sea charm density distribution xcrg(x) only,
whereas the dashed curve is the charm quark distribution function, for the sum of
the intrinsic charm density xcin(x) (see (2)) and xcrg(x).

inclusive spectra of open charm hadrons, in particular D-mesons,
produced at the LHC in pp-collisions at large pseudorapidities η
and large transverse momenta pT [15]. Furthermore, as we know
from [6–12] photons produced in association with heavy quarks
Q (≡ c,b) in the final state of pp-collisions provide valuable infor-
mation about the parton distributions in the proton [9–23].

In this Letter, having in mind these considerations we will first
discuss where the above-mentioned heavy flavor Fock states in
the proton could be searched for at the LHC energies. Following
this we analyze in detail, and give predictions for, the LHC semi-
inclusive pp-production of prompt photons accompanied by c-jets
including the intrinsic charm component in the PDF.

2. The intrinsic charm and beauty

According to the model of hard scattering [24–29] the relativis-
tic invariant inclusive spectrum of the hard process p + p → h + X
can be related to the elastic parton–parton subprocess i + j →
i′ + j′ , where i, j are the partons (quarks and gluons), by the for-
mula [26,27]:

E
dσ

d3 p
=

∑
i, j

∫
d2kiT

∫
d2k jT

1∫
xmin

i

dxi

1∫
xmin

j

dx j f i(xi,kiT )

f j(x j,k jT )
dσi j(ŝ, t̂)

dt̂

Dh
i, j(zh)

π zh
. (3)

Here: ki, j and k′
i, j are the four-momenta of the partons i or j

before and after the elastic parton–parton scattering, respectively;
kiT , k jT are the transverse momenta of the partons i and j; f i, j are
the PDFs of partons i, j inside the proton; Dh

i, j is the fragmenta-
tion function (FF) of the parton i or j to a hadron h; and zh is
the fraction of the final state hadron momentum from the parton
momentum.

When the transverse momenta of the partons are neglected in
comparison to the longitudinal momenta, the variables ŝ, t̂ , û and
zh can be presented in the following form [26]: ŝ = xi x j s, t̂ = xi

t
zh

,

û = x j
u
zh

, zh = x1
xi

+ x2
x j

, where, x1 = − u
s = xT

2 cot(θ/2), x2 = − t
s =

xT
2 tan(θ/2), xT = 2

√
tu/s = 2pT /

√
s. Here as usual, s = (p1 + p2)

2,
t = (p1 − p′

1)
2, u = (p2 − p′

1)
2, and p1, p2, p′

1 are the 4-momenta
of the colliding protons and the produced hadron h, respectively;
θ is the scattering angle of hadron h in the pp c.m.s. The lower
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limits of the integration in (3) can be presented in the following
form:

xmin
i = xR + xF

2 − (xR − xF )
, xmin

j = xi(xR − xF )

2xi − (xR + xF )
, (4)

where xR = 2p/
√

s and the Feynman variable xF of the produced
hadron, for example the D-meson, can be expressed via the vari-
ables pT and η, or θ being the hadron scattering angle in the pp
c.m.s.:

xF ≡ 2pz√
s

= 2pT√
s

1

tan θ
= 2pT√

s
sinh(η). (5)

One can see from (4) that, at least, one of the low limits xmin
i of the

integral (3) must be � xF . Thus if xF � 0.1, then xmin
i > 0.1, where

the ordinary (extrinsic) charm distribution is completely negligible
in comparison with the intrinsic charm distribution. Therefore, at
xF � 0.1, or equivalently at the charm momentum fraction xc > 0.1
the intrinsic charm distribution intensifies the charm PDF contri-
bution into charm hadroproduction substantially (see Fig. 1). As a
result, the spectrum of the open charm hadroproduction can be
increased in a certain region of pT and η (which corresponds to
xF � 0.1 in accordance to (4)). We stress that this excess (or even
the very possibility to observe relevant events in this region) is
due to the non-zero contribution of IC component at xc > xF > 0.1
(where non-IC component completely vanishes).

This possibility was demonstrated for the D-meson produc-
tion at the LHC in [15]. It was shown that the pT spectrum of
D-mesons is enhanced at pseudorapidities of 3 < η < 5.5 and
10 GeV/c < pT < 25 GeV/c due to the IC contribution, which was
included using the CTEQ66c PDF [12]. For example, due to the IC
PDF, with probability about 3.5%, the pT -spectrum increases by a
factor of 2 at η = 4.5. A similar effect was predicted in [30].

One expects a similar enhancement in the experimental spec-
tra of the open bottom production due to the (hidden) intrinsic
bottom (IB) in the proton, which could have a distribution very
similar to the one given in (2). However, the probability w IB to
find the Fock state with the IB contribution |uudbb̄〉 in the pro-
ton is about 10 times smaller than the IC probability w IC due to
relation w IB/w IC ∼ m2

c /m2
b [7,13].

The IC “signal” can be studied not only in the inclusive open
(forward) charm hadroproduction at the LHC, but also in some
other processes, such as production of real prompt photons γ or
virtual ones γ ∗ , or Z 0-bosons (decaying into dileptons) accompa-
nied by c-jets in the kinematics available to the ATLAS and CMS
experiments. The contributions of the heavy quark states in the
proton could be investigated also in the c(b)-jet production ac-
companied by the vector bosons W ± , Z 0. Similar kinematics given
by (4) and (5) can also be applied to these hard processes.

In the next section we analyze in detail the hard process of the
real photon production in pp collision at the LHC energies accom-
panied by the c-jet including the IC contribution in the proton.

3. Prompt photon and c-jet production

Recently the investigation of prompt photon and c(b)-jet pro-
duction in pp̄ collisions at

√
s = 1.96 TeV was carried out at the

TEVATRON [17–20]. In particular, it was observed that the ratio of
the experimental spectrum of the prompt photons (accompanied
by the c-jets) to the relevant theoretical expectation (based on the
conventional PDF which ignored the intrinsic charm) increases with
pγ

T up to factor about 3 when pγ
T reaches 110 GeV/c. Furthermore,

taking into account the CTEQ66c PDF, which includes the IC con-
tribution obtained within the BHPS model [6,7] one can reduce
this ratio up to 1.5 [31]. For the γ + b-jets pp̄-production no en-
hancement in the pγ -spectrum was observed at the beginning of
T
Fig. 2. The Feynman diagrams for the hard process c(b)g → γ c(b), the one-quark
exchange in the s-channel (left) and the same in the t-channel (right).

the experiment [17,20]. However in 2012 the DØ Collaboration has
confirmed observation of such an enhancement [19].

This intriguing observation stimulates our interest to look for a
similar “IC signal” in pp → γ + c(b)+ X processes at LHC energies.

The LO QCD Feynman diagrams for the process c(b) + g →
γ + c(b) are presented in Fig. 2. These hard sub-processes give
the main contribution to the reaction pp → γ + c(b)-jet + X .

Within LO QCD, in addition to the main subprocesses illus-
trated in Fig. 2 one considers the subprocesses gg → cc̄, qc → qc,
gc → gc accompanied by the bremsstrahlung c(c̄) → cγ , the con-
tribution of which is sizable at low pγ

T and can be neglected at
pγ

T > 60 GeV/c, according to [32]. The diagrams within the NLO
QCD are more complicated than Fig. 2.

Let us illustrate qualitatively the kinematical regions where
the IC component can contribute significantly to the spectrum of
prompt photons produced together with a c-jet in pp collisions at
the LHC. For simplicity we consider only the contribution to the re-
action pp → γ + c(jet)+ X of the diagrams given in Fig. 2. Accord-
ing to (5) and (4), at certain values of the transverse momentum
of the photon, pγ

T , and its pseudo-rapidity, ηγ (or rapidity yγ ) the
momentum fraction of γ can be xFγ > 0.1, therefore the fraction
of the initial c-quark must also be above 0.1, where the IC contri-
bution in the proton is enhanced (see Fig. 1). Therefore, one can
expect some non-zero IC signal in the pγ

T spectrum of the reaction
pp → γ + c + X in this certain region of pγ

T and yγ . In principle,
a similar qualitative IC effect can be visible in the production of
γ ∗/Z 0 decaying into dileptons accompanied by c-jets in pp colli-
sions.

Experimentally one can measure the prompt photons accompa-
nied by the c(b)-jet corresponding to the hard subprocess c(b)g →
γ c(b) presented in Fig. 2, when γ and the c(b)-jet are emitted
back to back. Therefore, it would be interesting to look at the con-
tribution of this graph to the pγ

T spectrum compared to total QCD
calculation including the NLO corrections.

In Fig. 3 the distribution dσ/dpγ
T of prompt photons produced

in the reaction pp → γ + c + X at
√

s = 8 TeV is presented in the
interval of the photon rapidity 1.52 < |yγ | < 2.37 and the c-jet ra-
pidity |yc| < 2.4. The kinematic cuts used are appropriate for the
ATLAS and CMS detectors [35,36]. The calculation was carried out
within PYTHIA8 [33] including only graphs in Fig. 2 and the radi-
ation corrections for the initial (ISR) and final (FSR) states along
with the multi-parton interactions (MPI) within PYTHIA8.

The upper line in the top of Fig. 3 is calculated with the
CTEQ66c PDF and includes IC, while the lower line uses the
CTEQ66 PDF where the charm PDF is radiatively generated only.
The probability of the IC contribution used is about 3.5% [12], this
yields the highest sensitivity of the cross-section to the IC, how-
ever the intrinsic charm in the proton could also be about 1% [10]
and therefore the results in this case will yield a lesser difference
when compared to the radiatively generated ones. The ratio of the
spectra with IC and without IC as a function of pγ

T is presented in
the bottom of Fig. 3.

One can see from Fig. 3 that the inclusion of the IC con-
tribution increases the spectrum by a factor of 4–4.5 at pγ

T �
400 GeV/c, however the cross-section is too small here (about
1 fb). At pγ � 150–200 GeV/c the cross-section is about 8–30 fb
T
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Fig. 3. The distribution dσ/dpγ
T of prompt photons produced in the reaction pp →

γ c X over the transverse momentum pγ
T integrated over dy in the interval 1.52 <

|yγ | < 2.37, |yc | < 2.4 at
√

s = 8 TeV. The red open points correspond to the in-
clusion of the IC contribution in PDF CTEQ66c with the IC probability of about
3.5% [12]; the blue solid points is our calculation using the CTEQ66 without the
IC contribution in the proton. The calculation was done within PYTHIA8 using the
LO QCD and including the ISR, FSR and MPI.

if the IC is included and the IC signal reaches 250–300%. It corre-
sponds to 800–3000 events in the 5 GeV/c bin for the luminosity
L = 20 fb−1. This means that even if the ATLAS/CMS c-jet recon-
struction efficiency is low, there would still be plenty of statistics
to make this measurement (even more so as the experimental bins
are likely to be larger than the 5 GeV resolution shown here). Note
that experimentally one can select the light and heavy (c and b)
jets at the LHC. Some estimations of this are in progress now.

Naturally the pγ
T distribution in Fig. 3 has the same form as

the distribution over the transverse momentum of the c-quark, pc
T ,

when only the hard subprocess g + c → γ + c in Fig. 2 is included.
In Fig. 4 the differential cross-section dσ/dpγ

T calculated at NLO
in the massless quark approximation as described in [31] is pre-
sented as a function of the transverse momentum of the prompt
photon. The following cuts are applied: pγ

T > 45 GeV, pc
T > 20 GeV

with the c-jet pseudorapidity in the interval |yc| � 2.4 and the
photon pseudorapidity in the central region |yγ | < 1.37. The solid
blue line represents the differential cross-section calculated with
the radiatively generated charm PDF (CTEQ66), the dash-dotted
green line uses as input the sea-like PDF (CTEQ66c4) and the
dashed red line the BHPS PDF (CTEQ66c2). In the lower half of
Fig. 4 the above distributions normalized to the distribution ac-
quired using the CTEQ66 PDF and μr = μ f = μF = pγ

T , are pre-
sented. The shaded yellow region, represents the scale dependence.
Clearly the difference between the spectrum using the BHPS IC PDF
and the one using the radiatively generated PDF increases as pγ

T
increases.

In Fig. 5 the same distributions as in Fig. 4 are shown, however
for forward photon rapidity 1.52 < |yγ | < 2.37. In this case larger
x values are probed and therefore we start to observe the differ-
ence between the solid and dashed (dash-dotted) lines at smaller
pγ

T values than in Fig. 4. The difference when using the BHPS IC
PDFs is about 200% at pγ

T ∼ 200 GeV. In this rapidity region the
difference between the BHPS and sea-like spectra is clearly visi-
ble even as early as pγ ∼ 200 GeV. However, while the IC is more
T
Fig. 4. The dσ/dpγ
T distribution versus the transverse momentum of the photon

for the process pp → γ + c + X at
√

s = 8 TeV using CTEQ6.6M (solid blue line),
BHPS CTEQ6c2 (dashed red line) and sea-like CTEQ6c4 (dash-dotted green line), for
central photon rapidity |yγ | < 1.37 (top). The ratio of these spectra with respect
to the CTEQ6.6M (solid blue line) distributions (bottom). The calculation was done
within the NLO QCD approximation.

Fig. 5. The same as Fig. 4, but for forward photon rapidity 1.52 < |yγ | < 2.37.

accentuated, the cross-section and hence the number of events is
less than those for the photon central rapidity in Fig. 4.

Note that comparing Fig. 3 to Fig. 5 one can see that both the
LO QCD and NLO QCD cross-section results in approximately the
same IC contribution, which increases when the photon transverse
momentum grows. Nevertheless the values of the spectra calcu-
lated within the NLO QCD are larger by a factor of about 1.3 than
the ones obtained within the LO QCD at pγ

T > 100 GeV/c including
the ISR, FSR and the MPI. Note that all the calculations presented
in Figs. 3–5 were done for the isolated photons.

Therefore Figs. 3, 5 show that the IC signal could be visible at
the LHC energies with both the ATLAS and CMS detectors in the
process pp → γ + c + X when pγ

T � 150 GeV/c. In the region the
IC signal dominates over the all non-intrinsic charm background
with significance at a level of a factor of 2 (in fact 170%).
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Fig. 6. The so-called QCD K-factor, or the ratio of the NLO contribution to the LO
one, for the central photon rapidity region |yγ | < 1.37 (top), and the forward pho-
ton rapidity 1.52 < |yγ | < 2.37 (bottom).

In Fig. 6 the K-factor, or the ratio between the NLO and LO
contributions to the photon and charm jet cross-section, for the
central and forward rapidity regions is presented showing the de-
pendence of the different initial state PDFs. It is clear that the
K-factor using the BHPS PDF at pT γ ranges where the x is large
is much smaller with respect to the one using the radiatively gen-
erated charm PDF. The dependence on the heavy quark PDF is felt
in the LO Compton subprocess (g Q → γ Q ), whose contribution
increases. At NLO it is the higher order correction, g Q → g Q γ
to the Compton subprocess that dominates the cross-section [34],
which also increases when using the BHPS PDF, while the rest of
the NLO contributions not dependent on the heavy quark PDF re-
main the same. This increase in the LO with respect to the NLO
when using the BHPS PDFs causes the K-factor for the BHPS to de-
crease, at high pT , as well as in particular in the forward rapidity
range, where an even higher x is probed.

4. Conclusion

In this Letter we have shown that the possible existence of the
intrinsic heavy quark components in the proton can be seen not
only in the forward open heavy flavor production in pp-collisions
(as it was believed before) but it can be visible also in the semi-
inclusive pp-production of prompt photons and c-jets at rapidi-
ties 1.5 < |yγ | < 2.4, |yc| < 2.4 and large transverse momenta of
photons and jets. In the inclusive photon spectrum measured to-
gether with a c-jet a rather visible enhancement can appear due
to the intrinsic charm (IC) quark contribution. In particular, it was
shown that the IC contribution can produce much more events
(factor 2 or 3) at pγ

T > 150 GeV/c and forward yγ in compari-
son with the relevant number expected in the absence of the IC.
Furthermore the same enhancement is also coherently expected
in the transverse momentum, pc

T , distribution of the c-jet mea-
sured together with the above-mentioned prompt photon in the
pp → γ + c-jet + X process.

Searching for the signal of intrinsic charm in such processes is
more pronounced than the search for the intrinsic bottom because
the IB probability is, at least, in 10 times smaller than the IC prob-
ability in the proton.

Experimentally, measuring this channel will be complicated due
to the light and bottom quark backgrounds, but with such a large
difference between models it should still be visible in the kine-
matic ranges suggested here.
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