1,338 research outputs found

    Theoretical flow characteristics of inlets for tilting-nacelle VTOL aircraft

    Get PDF
    The results of a theoretical investigation of geometric variables for lift-cruise-fan, tilting nacelle inlets operating at high incidence angles are presented. These geometric variables are investigated for their effects on surface static to free stream pressure ratio, and the separation parameters of maximum to diffuser exit surface velocity ratio and maximum surface Mach number for low speed operating conditions. The geometric parameters varied were the internal lip contraction ratio, external forebody to diffuser exit diameter ratio external forebody length to diameter ratio and internal lip major to minor axis ratio

    Tunable far-infrared laser spectroscopy of deuterated isotopomers of Ar–H2O

    Get PDF
    Several far-infrared vibration-rotation-tunneling transitions have been measured in deuterated isotopomers of Ar–H2O for the first time. These experimental results will enable the generation of improved intermolecular potential energy surfaces for the Ar–H2O system when combined with existing microwave, far-infrared, and infrared data

    Harmonics added to a flickering light can upset the balance between ON and OFF pathways to produce illusory colors

    Get PDF
    The neural signals generated by the light-sensitive photoreceptors in the human eye are substantially processed and recoded in the retina before being transmitted to the brain via the optic nerve. A key aspect of this recoding is the splitting of the signals within the two major cone-driven visual pathways into distinct ON and OFF branches that transmit information about increases and decreases in the neural signal around its mean level. While this separation is clearly important physiologically, its effect on perception is unclear. We have developed a model of the ON and OFF pathways in early color processing. Using this model as a guide, we can produce imbalances in the ON and OFF pathways by changing the shapes of time-varying stimulus waveforms and thus make reliable and predictable alterations to the perceived average color of the stimulus—although the physical mean of the waveforms does not change. The key components in the model are the early half-wave rectifying synapses that split retinal photoreceptor outputs into the ON and OFF pathways and later sigmoidal nonlinearities in each pathway. The ability to systematically vary the waveforms to change a perceptual quality by changing the balance of signals between the ON and OFF visual pathways provides a powerful psychophysical tool for disentangling and investigating the neural workings of human vision

    The Relationship between Cost Analysis and Program Management

    Get PDF
    Cost analysis if often viewed as applying basic principles and cost methodologies to determine total system cost. These finished estimates then flow into a decision making process and the cost estimator leaves the stage. Reality shows that the cost estimator is actually one of the main contributors to the decision making process. Our introduction to this special issue explores the areas where cost estimating plays a major role in program management in areas beyond the normal program estimate. We have included articles that show the key role estimators can play in source selection strategies and evaluation; cost of delay analysis for management decisions, earned value management methods to predict program costs; decision criteria to rank competing projects that complement traditional cost-based methods; and a new methodology for determining research and development budget profiles

    Delayed cone-opponent signals in the luminance pathway

    Get PDF
    Cone signals in the luminance or achromatic pathway were investigated by measuring how the perceptual timing of M- or L-cone-detected flicker depended on temporal frequency and chromatic adaptation. Relative timings were measured, as a function of temporal frequency, by superimposing M- or L-cone-isolating flicker on "equichromatic" flicker (flicker of the same wavelength as the background) and asking observers to vary contrast and phase to cancel the perception of flicker. Measurements were made in four observers on up to 35 different backgrounds varying in wavelength and radiance. Observers showed substantial perceptual delays or advances of L- and M-cone flicker that varied systematically with cone class, background wavelength, and radiance. Delays were largest for M-cone-isolating flicker. Although complex, the results can be characterised by a surprisingly simple model in which the representations of L- and M-cone flicker are comprised not only of a fast copy of the flicker signal, but also of a slow copy that is delayed by roughly 30 ms and varies in strength and sign with both background wavelength and radiance. The delays, which are too large to be due to selective cone adaptation by the chromatic backgrounds, must arise postreceptorally. Clear evidence for the slow signals can also be found in physiological measurements of horizontal and magnocellular ganglion cells, thus placing the origin of the slow signals in the retina-most likely in an extended horizontal cell network. Luminance-equated stimuli chosen to isolate chromatic channels may inadvertently generate slow signals in the luminance channel

    New renewably-sourced polyesters from limonene-derived monomers

    Get PDF
    The functionalisation of limonene has enabled the synthesis of two renewably-sourced monomers for the formation of terpene-derived polyesters. Three methods for the synthesis of the novel hydroxy-acid 6 are reported and their green-credentials scrutinised through comparison of their sustainability-metrics. Step-growth homo-polymerisation of 6 is demonstrated to yield a low molecular weight (2.6 kDa) novel polyester with 100% of its carbon content originating from the terpene starting material. The corresponding diol 2 is shown to act as a co-monomer with a renewable diacid. The resultant polyesters display impressive Mns of up to 30 kDa with Tgs between −6 and 24 °C. These materials have been shown to depolymerise under basic conditions for reclamation of the diol monomer 2

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    Exploiting disorder for perfect focusing

    Full text link
    We demonstrate experimentally that disordered scattering can be used to improve, rather than deteriorate, the focusing resolution of a lens. By using wavefront shaping to compensate for scattering, light was focused to a spot as small as one tenth of the diffraction limit of the lens. We show both experimentally and theoretically that it is the scattering medium, rather than the lens, that determines the width of the focus. Despite the disordered propagation of the light, the profile of the focus was always exactly equal to the theoretical best focus that we derived.Comment: 4 pages, 4 figure
    • …
    corecore