17 research outputs found

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies

    Get PDF
    Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics

    Relative Axial Displacement Leakage Effects on Straight-Through Labyrinth Seals with Rub Grooves

    No full text

    Circadian Synchronization of Liver Regeneration in Adult Rats: The Role Played by Adrenal Hormones

    Full text link
    The role played by the adrenal hormones in the regulation of liver proliferation in adult rats was investigated under various experimental conditions. In untreated control groups, cell growth was very low and endogenous corticosterone levels showed a clearly-defined circadian rhythm with a peak in the evening. Adrenalectomy depressed the level of endogenous corticosterone immediately and the growth rate of the liver increased significantly. We were able to prevent this effect by repeated injections of corticosterone at physiological doses. After a 1/3 hepatectomy and a sham-operation, the corticosterone blood level maintained its normal circadian pattern with the exception of a transient increase during the first two post-operative hours. After a hepatectomy of this kind, a negative correlation was found to exist between the adrenal hormone level and the waves of DNA synthesis; the subsequent mitoses appeared in two successive circadian waves of decreasing amplitude, a maximum value being reached in the morning. In rats submitted to a 1/3 hepatectomy and an adrenalectomy simultaneously, the endogenous corticosterone level fell significantly after a post-operative peak. The regenerating pattern was completely different from that induced by 1/3 hepatectomy alone. The rise in the labelling index began earlier and rose to significantly higher values; it was then followed by a single large mitotic wave without any circadian rhythm. These results favour the hypothesis that adrenal hormones have a significant effect on the negative control of liver regeneration. Circadian changes in the corticosterone level were responsible for the nycthemeral pattern observed in the regenerating liver after a partial hepatectomy. The results show a marked inhibition of the G1-S transition, particularly in the evening, when the endogenous corticosterone concentration was at its highest. Also discussed is the relationship between corticoids and 'chalones', which synergetically inhibit the passage from G0 into the cell cycle
    corecore