3 research outputs found

    Plant virus metagenomics: what we know and why we need to know more

    Get PDF
    In the past decade the concept of plant viruses as strictly disease-causing entities has been challenged. While the most well-studied and obvious interactions between plants and viruses are related to disease, there are several examples of mutualistic relationships between plants and viruses, both indirect and direct. These mutualistic interactions have not been fully explored, and many questions remain unanswered. One problem is the lack of knowledge of plant viruses in nature. Metagenomic surveys have estimated that only a small fraction of virus species are known. Additionally, globalization has led to the increased movement of plant material and virus movement. As viruses move from one area to another, new potential hosts offer the possibility of new interactions, both negative and positive

    A Chip-scale Integrated Cavity-electro-optomechanics Platform

    No full text
    We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out. © 2011 Optical Society of America.19252490524921Nichols, E.F., Hull, G.F., A preliminary communication on the pressure of heat and light radiation (1901) Phys. Rev., 13 (5), pp. 307-320Kippenberg, T.J., Vahala, K.J., Cavity opto-mechanics (2007) Optics Express, 15 (25), pp. 17172-17205. , http://www.opticsexpress.org/DirectPDFAccess/CC869546-BDB9-137E- CB51076B827C0C0D_148383.pdf?da=1&id=148383&seq=0&CFID= 4949129&CFTOKEN=68360138Kippenberg, T.J., Vahala, K.J., Cavity optomechanics: Back-action at the mesoscale (2008) Science, 321 (5893), pp. 1172-1176Favero, I., Karrai, K., Optomechanics of deformable optical cavities (2009) Nat. Photonics, 3 (4), pp. 201-205Braginskii, V.B., Manukin, A.B., (1977) Measurement of Weak Forces in Physics Experiments, , University of Chicago Press, ChicagoBraginskii, V.B., Khalili, F.Y., Thorne, K.S., (1992) Quantum Measurement, , Cambridge University PressRosenberg, J., Lin, Q., Painter, O., Static and dynamic wavelength routing via the gradient optical force (2009) Nat. Photonics, 3 (8), pp. 478-483Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J., Painter, O., A picogram- and nanometre-scale photonic-crystal optomechanical cavity (2009) Nature, 459 (7246), pp. 550-556Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A., Radiation-pressure cooling and optomechanical instability of a micromirror (2006) Nature, 444 (7115), pp. 71-74. , DOI 10.1038/nature05244, PII NATURE05244Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J., Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity (2005) Phys. Rev. Lett., 95 (3), p. 033901Gigan, S., Bohm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Zeilinger, A., Self-cooling of a micromirror by radiation pressure (2006) Nature, 444 (7115), pp. 67-70. , DOI 10.1038/nature05273, PII NATURE05273Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J., Optomechanically induced transparency (2010) Science, 330 (6010), pp. 1520-1523Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W., Circuit cavity electromechanics in the strong-coupling regime (2011) Nature, 471 (7337), pp. 204-208Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Painter, O., Electromagnetically induced transparency and slow light with optomechanics (2011) Nature, 472 (7341), pp. 69-73Schliesser, A., Anetsberger, G., Rivière, R., Arcizet, O., Kippenberg, T.J., High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators (2008) New J. Phys., 10, p. 095015Chan, J., Mayer Alegre, T.P., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O., Laser cooling of a nanomechanical oscillator into its quantum ground state (2011) Nature, 478 (7367), pp. 89-92Regal, C.A., Teufel, J.D., Lehnert, K.W., Measuring nanomechanical motion with a microwave cavity interferometer (2008) Nat. Physics, 4 (7), pp. 555-560Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Simmonds, R.W., Sideband cooling of micromechanical motion to the quantum ground state (2011) Nature, 475 (7356)Lee, K.H., McRae, T.G., Harris, G.I., Knittel, J., Bowen, W.P., Cooling and control of a cavity optoelec-tromechanical system (2010) Phys. Rev. Lett., 104 (12), p. 123604Lin, Q., Rosenberg, J., Jiang, X., Vahala, K.J., Painter, O., Mechanical oscillation and cooling actuated by the optical gradient force (2009) Phys. Rev. Lett., 103, p. 103601Ashkin, A., Acceleration and trapping of particles by radiation pressure (1970) Phys. Rev. Lett., 24 (4), pp. 156-159Safavi-Naeini, A.H., Painter, O., Proposal for an optomechanical travelling wave phonon-photon translator (2011) New J. Phys., 13, p. 013017Ekinci, K.L., Roukes, M.L., Nanoelectromechanical systems (2005) Rev. Sci. Instrum., 76, p. 061101Eichenfield, M., Chan, J., Camacho, R., Vahala, K.J., Painter, O., Optomechanical crystals (2009) Nature, 462 (7269), pp. 78-82Safavi-Naeini, A.H., Mayer Alegre, T.P., Winger, M., Painter, O., Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity (2010) Appl. Phys. Lett., 97 (18), p. 181106Gavartin, E., Braive, R., Sagnes, I., Arcizet, O., Beveratos, A., Kippenberg, T.J., Robert-Philip, I., Optomechanical coupling in a two-dimensional photonic crystal defect cavity (2001) Phys. Rev. Lett., 106 (20), p. 203902Frank, I.W., Deotare, P.B., McCutcheon, M.W., Lončar, M., Programmable photonic crystal nanobeam cavities (2010) Opt. Express, 18 (8), pp. 8705-8712Perahia, R., Cohen, J.D., Meenehan, S., Mayer Alegre, T.P., Painter, O., Electrostatically tunable optomechanical "zipper," cavity laser (2010) Appl. Phys. Lett., 97 (19), p. 191112Midolo, L., Van Veldhoven, P.J., Dündar, M.A., Nötzel, R., Fiore, A., Electromechanical wavelength tuning of double-membrane photonic crystal cavities (2011) Appl. Phys. Lett., 98 (21), p. 21120Song, B.-S., Noda, S., Asano, T., Akahane, Y., Ultra-high-Q photonic double-heterostructure nanocavity (2005) Nature Materials, 4 (3), pp. 207-210. , DOI 10.1038/nmat1320http://www.comsol.com/, SeeGröblacher, S., Hertzberg, J.B., Vanner, M.R., Cole, G.D., Gigan, S., Schwab, K.C., Aspelmeyer, M., Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity (2009) Nat. Physics, 5 (7), pp. 485-488Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane (2008) Nature, 452 (7183), pp. 72-U5Mayer Alegre, T.P., Perahia, R., Painter, O., Optomechanical zipper cavity lasers: Theoretical anaylysis of tuning range and stability (2010) Opt. Express, 18 (8), pp. 7872-7885Michael, C.P., Borselli, M., Johnson, T.J., Chrystal, C., Painter, O., An optical fiber-taper probe for wafer-scale microphotonic device characterization (2007) Optics Express, 15 (8), pp. 4745-4752. , http://www.opticsexpress.org/DirectPDFAccess/FDAD90A3-BDB9-137E- CC2CBC1B6F2E9D4E_131872.pdf?da=1&id=131872&seq=0&CFID= 43725978&CFTOKEN=86995364, DOI 10.1364/OE.15.004745Barclay, P.E., Srinivasan, K., Painter, O., Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper (2005) Optics Express, 13 (3), pp. 801-820. , http://www.opticsexpress.org/view_file.cfm?doc= %24%29%2CK%2CK%20%20%20%0A&id=%25%28%2C%27%28J%3CX%20%0A, DOI 10.1364/OPEX.13.000801Kleckner, D., Bouwmeester, D., Sub-kelvin optical cooling of a micromechanical resonator (2006) Nature, 444 (7115), pp. 75-78. , DOI 10.1038/nature05231, PII NATURE05231Johnson, S.G., Ibanescu, M., Skorobogatiy, M.A., Weisberg, O., Joannopoulos, J.D., Fink, Y., Perturbation theory for maxwell's equations with shifting material boundaries (2002) Phys. Rev. E, 65, p. 066611Olivero, J.J., Longbothum, R.L., Empirical fits to the voigt line width: A brief review (1977) J. Quant. Spectrosc. Radiat. Transfer, 17, pp. 233-23
    corecore