23 research outputs found

    Transport and Metabolism of Opioid Peptides across BeWo Cells, An In Vitro Model of the Placental Barrier

    Get PDF
    Please note that this is an author-produced PDF of an article accepted for publication following peer review. The publisher version is available on its site.In keeping with the advance of biotechnology, cell culture becomes an important tool for investigating the transport and the metabolism phenomena. A cell line of human origin, the BeWo choriocarcinoma cell line, was used for the study of the transport and metabolism of opioid peptides across the in vitro model of the placental barrier. Opioid peptides, both naturally occurring and their synthetic analogs, are of interest to be developed as potent analgesics and were included in this study. The apparent permeability coefficients of the peptides containing 4 to 11 amino acid or analog residues were in the range of 0.23-14.60 x 10-5 cm/sec. The apparent permeability coefficients of these peptides were comparable to those of sucrose or dextrans, hydrophilic markers. Molecular weight and size of the peptides were inversely correlated to the permeability across the BeWo monolayers. Lipophilicity and charges of the peptides were also investigated and found to be the minor factors regulating the extent of peptide permeation. Contrasting to the transport of DPDPE peptide analog across the blood-brain barrier, the transport of DPDPE across the BeWo monolayers were not found to be via carrier-mediated transport. The major transport pathway of the opioid peptides across the BeWo monolayers was found to be via paracellular route. In metabolism studies, aminopeptidase was found to be a major enzyme type responsible for the degradation of naturally occurring peptides but not for the synthetic analogues. The finding obtained from the present study reveal the applicability of the BeWo cell line to be used as the in vitro cell culture model for the transport and metabolism screening of the opioid peptides

    A Methodology for Simultaneous Fluorogenic Derivatization and Boronate Affinity Enrichment of 3-Nitrotyrosine Containing Peptides

    Get PDF
    We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO2)LER, was employed as a model for method validation. Further, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to peroxynitrite in the total protein lysate of cultured C2C12 cells. The quantitation of 3-NT content in samples was achieved through either fluorescence spectrometry or boronate affinity chromatography with detection by specific fluorescence (excitation and emission wavelengths of 360 and 510 nm, respectively); the respective limits of detection were 95 and 68 nM (19 and 13 pmol total amount) of 3-NT. Importantly, the derivatized peptides show a strong retention on a synthetic boronate affinity column, containing sulfonamide-phenylboronic acid, under mild chromatographic conditions, affording a route to separate the derivatized peptides from large amounts (milligrams) of non-derivatized peptides, and to enrich them for fluorescent detection and MS identification. Tandem MS analysis identified chemical structures of peptide 3-NT fluorescent derivatives and revealed that the fluorescent derivatives undergo efficient backbone fragmentations, permitting sequence-specific identification of protein nitration at low concentrations of 3-NT in complex protein mixtures

    LC-MS/MS Method for the determination of carbamathione in human plasma

    Get PDF
    Liquid chromatography-tandem mass spectrometry methodology is described for the determination of S-(N,N-diethylcarbamoyl)glutathione (carbamathione) in human plasma samples. Sample preparation consisted of a straightforward perchloric acid medicated protein precipitation, with the resulting supernatant containing the carbamathione (recovery ∼98%). For optimized chromatography/mass spec detection a carbamathione analog, S-(N,N-di-i-propylcarbamoyl)glutathione, was synthesized and used as the internal standard. Carbamathione was found to be stable over the pH 1-8 region over the timeframe necessary for the various operations of the analytical method. Separation was accomplished via reversed-phase gradient elution chromatography with analyte elution and re-equilibration accomplished within 8 minutes. Calibration was established and validated over the concentration range of 0.5-50 nM, which is adequate to support clinical investigations. Intra- and inter-day accuracy and precision determined and found to be < 4% and < 10%, respectively. The methodology was utilized to demonstrate the carbamathione plasma-time profile of a human volunteer dosed with disulfiram (250 mg/d). Interestingly, an unknown but apparently related metabolite was observed with each human plasma sample analyzed

    Fluorogenic Tagging of Peptide and Protein 3-Nitrotyrosine with 4-(Aminomethyl)-benzenesulfonic Acid for Quantitative Analysis of Protein Tyrosine Nitration

    Get PDF
    Protein 3-nitrotyrosine (3-NT) has been recognized as an important biomarker of nitroxidative stress associated with inflammatory and degenerative diseases, and biological aging. Analysis of protein-bound 3-NT continues to represent a challenge since in vivo it frequently does not accumulate on proteins in amounts detectable by quantitative analytical methods. Here, we describe a novel approach of fluorescent tagging and quantitation of peptide-bound 3-NT residues based on the selective reduction to 3-AT followed by reaction with 4-(amino-methyl)benzenesulfonic acid (ABS) in the presence of K3Fe(CN)6 to form a highly fluorescent 2-phenylbenzoxazole product. Synthetic 3-NT peptide (0.005–1 μM) upon reduction with 10 mM sodium dithionite and tagging with 2 mM ABS and 5 μM K3Fe(CN)6 in 0.1 M Na2HPO4 buffer (pH 9.0) was converted with yields >95% to a single fluorescent product incorporating two ABS molecules per 3-NT residue, with fluorescence excitation and emission maxima at 360 ± 2 and 490 ± 2 nm, respectively, and a quantum yield of 0.77 ± 0.08, based on reverse-phase LC with UV and fluorescence detection, fluorescence spectroscopy and LC–MS–MS analysis. This protocol was successfully tested for quantitative analysis of in vitro Tyr nitration in a model protein, rabbit muscle phosphorylase b, and in a complex mixture of proteins from C2C12 cultured cells exposed to peroxynitrite, with a detection limit of ca. 1 pmol 3-NT by fluorescence spectrometry, and an apparent LOD of 12 and 40 pmol for nitropeptides alone or in the presence of 100 μg digested cell proteins, respectively. LC–MS–MS analysis of ABS tagged peptides revealed that the fluorescent derivatives undergo efficient backbone fragmentations, allowing for sequence-specific characterization of protein Tyr nitration in proteomic studies. Fluorogenic tagging with ABS also can be instrumental for detection and visualization of protein 3-NT in LC and gel-based protein separations

    Profiling the Photochemical-Induced Degradation of Rat Growth Hormone with Extreme Ultra-pressure Chromatography–Mass Spectrometry Utilizing Meter-Long Microcapillary Columns Packed with Sub-2-µm Particles

    Get PDF
    In recent years, protein therapeutics have seen increasing use in the therapeutic arena. As with traditional small molecule drug substances, one is obligated to ensure purity and stability of the various dosage forms. With these higher molecular weight therapeutics, a common approach for analytical characterization is enzymatic digestion followed by gradient elution liquid chromatography with mass spectrometry detection to create a peptide map (bottom-up protein analysis). Due to the difficulty to separate mixtures frequently encountered, there is the need for advanced chromatographic systems featuring increased resolution and/or peak capacity that can be operated in the gradient elution format. Presently, we describe an extreme ultra-pressure liquid chromatography (XUPLC) system that has been implemented as an in-house add-on to a commercial ultra-pressure chromatography system. This add-on allows operation at the 38 Kpsi range, accommodates the use of capillary columns in excess of 1 m packed with sub-2-µm particles and can be operated in the gradient elution format. To evaluate the utility of this system, rat growth hormone was used as a model protein and was exposed to light (λ 254 nm) to create a stress environment. When enzymatic digests of control and stressed protein were analyzed with the XUPLC system using MS detection, greater than 92% peptide coverage was achieved, including the identification some peptides where pre-oxidation of Met residues had occurred, as well as chemistry specifically related to the photolysis of protein disulfide linkages. When the same samples were analyzed by commercial UPLC and compared to the XUPLC results, the utility of the increased peak capacity available with the XUPLC was apparent as previously co-eluting peaks were now well resolved. In particular, one specific degradation route was identified where a pair of isobaric cis/trans diastereomerically related peptides were well resolved by XUPLC while they were unresolved by UPLC. Clearly the use of this system operating at a higher pressure regime with long capillary columns is and will be useful in continued investigations of protein stability, especially in cases where only subtle differences in the amino acid residues have occurred during degradation
    corecore