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Abstract

Liquid chromatography-tandem mass spectrometry methodology is described for the 

determination of S-(N,N-diethylcarbamoyl)glutathione (carbamathione) in human plasma samples. 

Sample preparation consisted of a straightforward perchloric acid medicated protein precipitation, 

with the resulting supernatant containing the carbamathione (recovery ∼98%). For optimized 

chromatography/mass spec detection a carbamathione analog, S-(N,N-di-i-
propylcarbamoyl)glutathione, was synthesized and used as the internal standard. Carbamathione 

was found to be stable over the pH 1-8 region over the timeframe necessary for the various 

operations of the analytical method. Separation was accomplished via reversed-phase gradient 

elution chromatography with analyte elution and re-equilibration accomplished within 8 minutes. 

Calibration was established and validated over the concentration range of 0.5-50 nM, which is 

adequate to support clinical investigations. Intra- and inter-day accuracy and precision determined 

and found to be < 4% and < 10%, respectively. The methodology was utilized to demonstrate the 

carbamathione plasma-time profile of a human volunteer dosed with disulfiram (250 mg/d). 

Interestingly, an unknown but apparently related metabolite was observed with each human 

plasma sample analyzed.
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1. Introduction

Disulfiram has been used for the treatment of alcohol dependence since its accidental 

discovery approximately 60 years ago [1]. The pharmacological basis and rationale for the 

use of disulfiram as a deterrent treatment for alcohol dependence is its inhibition of liver low 

Km mitochondrial aldehyde dehydrogenase (ALDH2). The inhibition of ALDH2 results in 

an increase in acetaldehyde which is believed to be responsible for the adverse effects 

known as the disulfiram-ethanol reaction. Disulfiram is a pro-drug that requires 

bioactivation to an active metabolite which is responsible for the inhibition of ALDH2 [2, 3, 

4]. The metabolite responsible for the inhibition of ALDH2 has been identified as DETC-

MeSO [5] and the cytochrome P450 enzymes required in this bioactivation process has been 

delineated [6, 7]. DETC-MeSO is oxidized to S-methyl N,N-diethylthiocarbamate sulfone 

(DETC-MeSO2) [8] and subsequently to S-(N,N-diethylcarbamoyl) glutathione 

(carbamathione) [9] (Figure 1).

Carbamathione is a partial NMDA glutamate antagonist [9] but does not inhibit liver 

ALDH2 [10]. The clinical significance of carbamathione and its possible neurochemical 

activity [9] was not considered until studies showed that disulfiram was a promising 

therapeutic agent for treating cocaine dependence [11, 12, 13, 14, 15]. Although the 

mechanism of action of disulfiram's effectiveness in cocaine dependence is unclear, a 

working hypothesis has emerged that carbamathione may be the responsible metabolite 

because of its NMDA glutamate receptor activity [9]. Early metabolite distribution studies 

with radio labelled 35S [16, 17] suggested a possible disulfiram metabolite in rat brain would 

no longer carry a disulfiram derived sulphur but rather a metabolite with only a N,N-

diethylcarbamoyl moiety. In rat studies carbamathione has since been found in rat urine, bile 

[18], plasma and brain [19]. While carbamathione has been detected in a variety of rat 

fluids, the suggestion that carbamathione may have a neurological action in humans must be 

supported by detection in humans.

In a previous report [19], methodology was described for the determination of 

carbamathione present in rat brain and plasma where sampling and sample preparation was 

accomplished by microdialysis. The samples further subjected to reversed-phase gradient 

elution liquid chromatography (LC) separation followed by detection and quantification by 

tandem mass spectrometry (MS/MS). While allowing for determination at the 1 nM level, 

the combination of internal standard (IS) retention and chromatographic re-equilibration 

resulted in a sample throughput time of 50 minutes.

The goal of the present investigation was the development of methodology for the 

determination of carbamathione in human plasma samples suitable for support of human 

clinical investigations with improved sample throughput. Issues to be addressed include 

plasma sample preparation and the identification of an internal standard that is optimized 

with respect to the LC retention window and provides for sensitive and selective MS 

detection. While plasma sample preparation proved to be straightforward using acid 

mediated protein precipitation, the identification of an internal standard meeting the 

previously noted criteria involved the synthesis and evaluation of several glutathione 

analogs in order to meet the desired criteria. Ultimately the developed methodology 
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described herein was applied to human plasma samples obtained from disulfiram-dosed 

healthy volunteers, and to our knowledge, appears to be the first report of the presence of 

carbamathione as a disulfiram metabolite in humans.

2. Experimental

2.1 Chemicals and reagents

Carbamathione was synthesized using methods previously developed [18] and obtained 

from Kaul et al. [19]. S-n-butylglutathione, tris hydrochloride, ammonium bicarbonate, di-i-
propylcarbamoylchloride, and propyl-, butyl- and pentylisocyanate were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Ammonium acetate, sodium phosphate, formic acid, 

perchloric acid (70%) and HPLC grade methanol were obtained from Fisher (Fairlawn, NJ, 

USA). Nanopure water was prepared by a Water Pro Plus purification system (Labconco, 

Kansas City, MO, USA). Blank pooled human plasma was purchased from Innovative 

Research (Novi, MI, USA).

2.2 Synthesis of internal standard candidates

2.2.1 General procedure for S(N-alkylcarbamoyl)glutathione derivatives—
Carbamathione analogs were synthesized by reacting propyl-, butyl- or pentyl isocyanate 

with glutathione according to the method of Han et al. [20]. The structures of the products 

obtained were confirmed by 1H NMR and mass spectrometry.

2.2.1.1 S-(N-n-propylcarbamoyl)glutathione: Exact mass determination of [M+H]+ 

C14H25N4O7S was 393.1451± 0.0015 (n = 3) which deviated by 1.8 ppm from the expected 

mass. The proton NMR chemical shifts were δ 0.82 t 3H (CH3CH2CH2NH–), δ 1.41 h 2H 

(CH3CH2*CH2NH–), δ 1.91 q 2H (Glu-β,β′), δ 2.3 m 2H (Glu-γ,γ′), δ 3.05 q 2H 

(CH3CH2CH2*NH–), δ 3.32 m 2H (Cys-β, Glu-α), δ 3.68 d 2H (Gly-α,α′), δ 4.34 t, 1H 

(Cys-α). (* indicates specific protons)

2.2.1.2 S-(N-n-butylcarbamoyl)glutathione: Exact mass determination of [M+H]+ 

C15H27N4O7S was 407.1590± 0.0008 (n = 3) which deviated by -2.5 ppm from the expected 

mass. The proton NMR chemical shifts were δ 0.85 t 3H (CH3CH2CH2CH2NH–), δ 1.25 h 

2H (CH3CH2*CH2CH2NH–), δ 1.38 q 2H (CH3CH2CH2*CH2NH–) δ 1.91 m 2H (Glu-β,β′), 

δ 2.29 q 2H (Glu-γ,γ′), δ 3.08 m 2H (CH3CH2CH2CH2*NH–), δ 3.32 m 2H (Cys-β, Glu-α), 

δ 3.68 dd 2H (Gly-α,α′), δ 4.33 dt, 1H (Cys-α). (* indicates specific protons)

2.2.1.3 S-(N-n-pentylcarbamoyl)glutathione: Exact mass determination of [M+H]+ 

C16H29N4O7S was 421.1764± 0.0010 (n = 3) which deviated by 1.7 ppm from the expected 

mass. The NMR chemical shifts for the proton NMR were δ 0.85 t 3H 

(CH3CH2CH2CH2CH2NH–), δ 1.22 h 2H (CH3CH2CH2*CH2CH2NH–), δ 1.26 m 2H 

(CH3CH2*CH2CH2CH2NH–), δ 1.39 q 2H (CH3CH2CH2CH2*CH2NH–) δ 1.91 m 2H (Glu-

β,β′), δ 2.3 q 2H (Glu-γ,γ′), δ 3.07 m 2H (CH3CH2CH2CH2CH2*NH–), δ 3.32 m 2H (Cys-β, 

Glu-α), δ 3.68 dd 2H (Gly-α,α′), δ 4.34 dt, 1H (Cys-α). (* indicates specific protons)

2.2.1.4S-(N,N-di-i-propylcarbamoyl)glutathione: A solution of 

diisopropylcarbamoylchloride (1.2 mmol in 7 ml pyridine) was added to a solution of 
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glutathione (0.6 mmol in 3 ml water) and stirred over night at room temperature. The 

resulting mixture was evaporated to dryness and re-dissolved in 6 ml water. Care must be 

taken that the reaction mixture is not heated excessively (30 °C max) during reaction or 

solvent evaporation as excessive heating results in an oily orange byproduct, which is 

difficult to remove. The crude product was subjected to C18 semi- preparatory HPLC (70 % 

H2O, 30% methanol and 0.1% formic acid) and dried in a lyophilizer, resulting in a white 

powder. The structure was confirmed by 1H NMR and mass spectrometry. Exact mass 

determination of [M+H]+ C17H31N4O7S was 435.1901± 0.0006 (n = 3) which was -2.8 ppm 

from the expected mass. The proton NMR chemical shifts were δ 1.21 d 12H 

((CH3)2CH)2N–), δ 1.91 q 2H (Glu-β,β′), δ 2.29 m 2H (Glu-γ,γ′), δ 3.33 m 5H 

(((CH3)2CH*)2N-, Cys-β, Glu-α), δ 3.69 d 2H (Gly-α,α′), δ 4.35 t, 1H (Cys-α). (* indicates 

specific protons)

2.3 Methods

2.3.1 LC method for MS detection—Solvents were delivered by a Waters Acquity 

UPLC system. Chromatographic separation was performed using a Phenomenex Kinetex 

column ( phase C18; diameter, 2.1 × 50 mm; particles size, 1.7 μm; pore size, 100 Å), which 

was protected by a Phenomenex KrudKatcher Ultra filter (0.5 μm pores, 316 stainless steel ) 

followed by a Waters Vanguard C8 pre-column. Chromatographic solvents consisted of A: 

99% H2O, 1% methanol and 0.1% formic acid and B: 1% H2O, 99% methanol and 0.1% 

formic acid delivered at a flow rate of 400 μl/min. The sample was injected (50 μL volume) 

onto a column that was pre-equilibrated at 5% B. After 0.2 min a linear gradient of 11% 

B/min for 4 minutes was implemented. The column was then washed with 80% B for 2 

minutes and subsequently re-equilibrated at 5% B for 1.5 minutes, resulting in a total run-

time of 8 minutes. For the first two minutes, chromatographic effluent is diverted to waste, 

preventing salts and polar endogenous compounds from entering the mass spectrometer.

2.3.2 LC method for UV detection—The HPLC system consisted of two Shimadzu 

LC6A pumps and a Shimadzu SIL-6B auto injector (50 μl injection utilized) controlled by a 

Shimadzu SCL-6B system controller. Detection was accomplished using a Kratos UV/Vis 

chromatographic detector set at 215 nm with TurboChrom V4 used for data collection. 

Chromatographic separation was conducted using a Phenomenex Inertsil ODS-3 column 

(150 × 4.6mm, 5μ particles, 100 Å) protected with a Supelcosil LC-8 guard column (2 × 2.1 

mm, 5 μm particles). An isocratic solvent program consisting of 70% A (95% H2O, 5% 

methanol and 0.1% formic acid) and 30% B (5% H2O, 95% methanol and 0.1% formic acid) 

with a flow rate of 1ml/min, was utilized for the chromatography.

2.3.3 Mass spectrometry parameters—Mass spectrometry was performed on a 

Quattro Ultima “triple” quadrupole instrument (Micromass Ltd., Manchester UK). The mass 

spectrometer was run in positive ion mode using an ESI ionization source. The mass 

spectrometer source block was set at 100 °C and the desolvation gas temperature was set at 

300 °C. Argon collision gas was set to attenuate the beam by 10-20% (10−3 mbar). 

Quadrupoles 1 and 3 were tuned to a resolution of 0.9 amu FWHH. Collision energy and 

cone voltage settings are optimized for each compound. Data processing was performed 

using MassLynx 4.1 and Graphpad Prism 5. Fragmentation patterns of S-n-butyl-
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glutathione, S-(N-n-propylcarbamoyl)glutathione, S-(N-n-butylcarbamoyl)-glutathione, S-

(N-n-pentylcarbamoyl)-glutathione, S-(N,N-di-i-propylcarbamoyl)glutathione and 

carbamathione and were determined by infusing an aqueous solution of the respective 

compound at 400 μl/min 30% solvent B (HPLC-MS method) for source optimization. 

Product ion scans were acquired at varying collision energies, 10-45 V. One MRM transition 

unique to the substance was chosen for each compound and the collision energies optimized. 

The most abundant MRM transitions were chosen for the secondary carbamoyl substances 

and S-n-alkyl conjugates. However, for the tertiary carbamoyl substances a carbamoyl 

moiety related fragment was selected as most suitable reporter transition (Figure 2). The 

mass transitions and optimum settings for all compounds are summarized in Table 1. 

Subsequently a mixture of all five internal standard candidates (100 nM solution of each) 

was run on the HPLC-MS system to determine relative retention times with respect to 

carbamathione (Figure 3).

2.3.4 Sample pretreatment—Plasma, 100 μl in an Eppendorf tube, was spiked with 10 

μl of 100 nM S-(N,N-di-i-propylcarbamoyl)glutathione (internal standard) and for 

calibration curves, 10 μl of a carbamathione solution. Water, 45 μl, was then added and the 

mixture vortexed for 5 seconds. In the case of blank or patient samples, 55 μl water was 

added instead of 45 μl to compensate for the volume. Proteins were precipitated by the 

addition of 35 μl perchloric acid and the mixture vortexed for 5 seconds and then placed on 

ice for 5 minutes. The precipitated sample was subsequently centrifuged for 5 minutes at 

11,000 times gravity (13000 rpm at 60 mm radius). The supernatant was recovered and 

transferred to an autosampler vial for subsequent determination.

2.3.5 Stability—Carbamathione plasma stability was tested in pooled human plasma. 

Samples (n=5) enriched with 150 μM carbamathione were allowed to incubate at room 

temperature for 2, 4, 6 and 24 hours prior to acid mediated precipitation. Analyte stability in 

the plasma extract was assayed in the fashion, but substituting plasma for the acid plasma 

extract. A limited freeze-thaw stability experiment was performed by analyzing 

carbamathione enriched plasma samples (n=5) at day 1, 3 and 7 of a seven day period. 

Carbamathione stability was checked against a five point calibration curve ranging from 50 

to 250 μM carbamathione in plasma.

2.4 Validation

The sample pretreatment method was applied (n=5) to five spiked plasma concentrations of 

50.0, 10.0, 5.0, 1.0, and 0.5 nM and the samples analyzed according to the described 

methodology. This experiment was repeated for 4 consecutive days to determine intra and 

inter-day stability of the method. Data was processed for linearity, precision, accuracy and 

to determine the limit of quantification. An infusion of carbamathione was utilized to obtain 

a qualitative assessment of ionization suppression caused by the human plasma matrix. An 

infusion pump was used to deliver a constant amount of carbamathione post-column into the 

LC stream entering the mass spectrometer. The mass spectrometer was set in SRM mode to 

monitor the analyte signal stability and a blank plasma sample was injected onto the column. 

Carbamathione stability was assessed at various pH's and at elevated temperature. Solutions 

of carbamathione (100 μM) were prepared in five 100 mM buffer solutions of perchloric 
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acid (pH 1), formic acid (pH 2.5), acetate (pH 4), tris (pH 6) and phosphate (pH 8). Sample 

vials were kept at 50 °C and samples taken every 24 hours for 5 consecutive days to 

determine stability employing the HPLC-UV method. Samples were checked against a 

control sample that was stored at −20 °C and thawed immediately prior to analysis.

2.5 Human studies

A healthy 52-year-old female Caucasian volunteer with no alcohol or other substance use 

disorders was recruited. Voluntary, written, informed consent was obtained, and approval 

obtained from the University of California at San Francisco Committee on Human Research. 

The patient volunteer weighed 69 kg and was 160 cm in height. Disulfiram 250 mg/d was 

administered with staff observation for 3 days. On the fourth day, after an eight hour 

overnight fast, an antecubital venipuncture was undertaken and 7 ml of blood was drawn 

into a heparinized tube to obtain trough disulfiram concentration in the plasma. A urine 

sample was also collected prior to disulfiram dosing to test for recent use of any illicit 

substances. A 250 mg dose of disulfiram was then administered and blood samples drawn at 

1, 2, 4, 6, 8, and 10 hours after disulfiram dosing. Each blood sample was immediately 

centrifuged and the plasma separated and frozen at −70 °C until the time of determination of 

carbamathione.

3. Results and discussion

3.1 Chromatography

As noted previously, human plasma assay methodology for carbamathione must possess the 

necessary sensitivity and selectivity to support continued clinical investigation, but from an 

analytical perspective, should also be robust and enable high sample throughput. In order to 

achieve high efficiency rapid separations one frequently resorts to the use of high linear 

velocities (> 2 mm/s), small particles (< 3μm) or a combination of these parameters, which 

can result in the need for much higher operating pressures as compared to those available to 

many common LC systems currently in use. An alternative approach is the use of solid core 

particles featuring a porous shell that results in efficient kinetic performance without the 

need for substantially higher operating pressures. Based on these considerations 

chromatographic method development was based on the use of a reverse-phase Phenomenex 

Kinetex column (1.7 μm porous shell particles), which reduces diffusion distance in the 

retention process and thus mimics the chromatographic performance of smaller particles 

(e.g. 1 μm particles) without the associated increase in backpressure needed to achieve 

similar linear velocities with the smaller diameter particles.

Other aspects addressed include the development of an efficient chromatographic gradient 

elution program. For high sensitivity bioanalysis, one is often interested in using a relatively 

large injection volume with respect to the dimensions of the chromatographic column in 

order to minimize dilution. To this end, when possible it is desirable to use an initially weak 

mobile phase composition with respect to the analyte and/or injection solvent composition to 

allow for larger volume injections, thus providing for the achievement of trace enrichment, 

which translates into the potential to achieve high sensitivity detection.
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With these criteria in mind, the gradient profile implemented consisted of an analyte 

focusing step (initial mobile phase composition was ∼5% MeOH), a relatively steep 

gradient elution program (11%/min linear ramp of solvent B, solvent B ∼99% MeOH) and a 

washing step (80% solvent B), followed by return to the initial conditions with only 1.5 

minutes required to achieve column re-equilibrium. The total injection to re-equilibration 

time was achieved in 8 minutes, representing a substantial throughput enhancement as 

compared to the previously reported methodology [19]. The adopted solvent program 

(details presented in the experimental section) allowed the loading of a relatively large 

volume injection (50 μl applied to a 2.1 mm i.d. column), and when followed by the 

previously noted steep gradient program, resulted in excellent sensitivity (details provided in 

a latter section) without the need for pre-concentration during sample preparation. A typical 

chromatogram of the analyte present in aqueous solution is provided in Figure 3A, where the 

elution time is noted as ∼2.7 minutes.

3.2 Internal standard selection

The incorporation of an internal standard (IS) generally adds to the quantitative robustness 

of bioanalytical methods. With regard to physical-chemical properties, an ideal situation 

occurs when the IS exhibits similar solubility, chemical reactivity, ionization constants, 

possesses a closely matched chemical structure as compared to the analyte of interest. The 

closest match occurs with the use of a stable isotope modification of the analyte, which is 

especially useful for LC-MS/MS based methodology. In the present case, stable isotope 

labeled carbamathione is not readily available, nor are any (isotope labeled) precursors or 

building blocks that would allow for a straight forward synthesis of this molecule. 

Accordingly, efforts were directed to obtaining five IS candidates offering appropriate 

chromatographic and MS fragmentation characteristics.

As with carbamathione, all of these substances can be viewed as straightforward chemical 

elaborations of glutathione, and can be categorized into three different categories based on 

their functional groups present. They are seen to be an S-n-alkyl-glutathione derivative 

(Figure 2A) that deviates the most from carbamathione, having an alkyl moiety bonded to 

the cysteine sulfur and thus lacking the carbamoyl linkage, three S-(N-mono-n-

alkylcarbamoyl)glutathiones (Figure 2B-2D) each possessing the carbamoyl linkage of 

carbamathione, but with only a single alkyl group present on the nitrogen and an S-(N,N-di-

n-alkylcarbamoyl)glutathione (Figure 2E), that possesses a tertiary carbamoyl moiety (two 

alkyl substituents on the carbamoyl nitrogen) that closely mimics the structure of 

carbamathione.

In order to determine the optimal internal standard for the quantitation of carbamathione, the 

properties of the five IS candidates were investigated with respect to their LC retention 

times and fragmentation during collision induced dissociation (CID). As expected, the 

various potential internal standards showed significant differences in retention time (Figure 

3B) and bracketed the elution window of carbamathione (Figure 3A). As regards MS/MS 

detection criteria, the CID fragmentation patterns of each substance are shown in Figure 3. 

From these results, the most sensitive mass transition for each IS candidate was selected for 

evaluation against that of carbamathione (Table 1). Based only on retention time, S-(N-n-
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butylcarbamoyl)glutathione (Figure 2C) would seem to be the preferred internal standard as 

it co-elutes with carbamathione (Figure 3). However, this substance is isobaric with 

carbamathione and as a result this internal standard candidate would only be suitable if it 

offered a unique CID fragment (compare figure 2C to 2F). Several unique transitions are 

present, however, crosstalk between carbamathione and S-(N-n-butylcarbamoyl)glutathione 

SRM channels could not be avoided (note the low intensity 364→278 transition, which is 

the major carbamathione transition) regardless of which transition was selected. The 

difficulty of avoiding the cross talk, presumably with low abundance glutathione backbone 

fragments, required a reevaluation of internal standard selection criteria. Note that the CID 

spectra of S-alkyl- and S-(N-alkylcarbamoyl) glutathiones are dominated by backbone 

fragments (Figures 2A-2D) and have common low mass fragments below m/z 200.

Moving to other candidates exhibiting a different retention times as compared to 

carbamathione, alleviates LC co-elution and provides unique fragmentation products 

amenable to quantitation. Comparing the S-(N-mono-n-alkyl) secondary carbamoyl 

derivatives (Figure 2B, 2C and 2D) to the tertiary carbamoyl group of carbamathione 

(Figure 2F) suggests the tertiary carbamoyl group stabilizes a side chain only fragment. This 

motivated the synthesis of S-(N,N-di-i-propylcarbamoyl)glutathione (Figure 2E). As 

expected, the E CID spectrum has abundant carbamoyl related fragments and at optimum 

CE the m/z 128 fragment dominates the CID spectra, which is similar to the dominant 

carbamoyl related m/z 100 fragment of carbamathione. Based on these results, substance E 
(Figure 2) was selected as the IS for the plasma assay of carbamathione.

3.3 Sample preparation

The polar analyte glutathione can be extracted efficiently out of human plasma by various 

acid mediated protein precipitation procedures, followed by centrifugation [21, 22]. The 

resulting aqueous solution is compatible with a reversed phase HPLC separation, resulting in 

a convenient sample preparation strategy. Since the targeted analyte and IS are each simple 

chemical elaborations of glutathione, acid mediated protein precipitation was evaluated as 

an approach to sample deproteinization. Accordingly, aqueous and plasma samples 

containing carbamathione were prepared and subjected to perchloric acid (PCA) mediated 

protein precipitation (n=5). After recovery of the resulting supernatant, analyte 

determination revealed recovery of 98.1 ± 2.0 % for plasma with respect to the aqueous 

standards. Due to this result other acids were not investigated However, to determine if 

unknown plasma components present in the deproteinized plasma supernatant resulted in an 

altered MS ionization process, a post-column infusion of carbamathione and the IS was 

conducted. The results obtained revealed that in the elution window of interest there was no 

endogenous compound interference or ion suppression. An observation that was further 

reinforced by the quantitative recovery of carbamathione.

With this information in place, there was still the need to evaluate the stability of the analyte 

in the media of various pH values expected to be encountered during the envisioned assay 

operations. During assay development of carbamathione present in rat brain and plasma 

microdialysis samples, Kaul et al. [19] found the substance to be stable in Ringer's solution 

at room temperature, frozen and when subjected to several freeze-thaw cycles over the 
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analytical timeframe. However in the present work, there was need to establish solution 

stability over a wider pH range and in an attempt to force degradation, solutions of 

carbamathione were prepared at pH 1.0 to pH 8.0 and heated to 50 °C. These solutions were 

evaluated every 24 hours for a week with no observed degradation, thus establishing that 

carbamathione is stable at 50 °C for a week over the pH 1.0-8.0 range, clearly sufficient for 

the various analytical operations needed during plasma sample determination.

The stability of carbamathione within a plasma matrix was also evaluated (table 2). 

Carbamathione does demonstrate some plasma instability at room temperature, with 7.8 % 

degradation observed after 2 hours of incubation. The post-extraction sample was 

determined to be stable for at least 24 hours, which is a sufficient time-frame for LC-MS 

analysis (table 2). Since carbamathione is stable in both dialysates and plasma extracts, the 

plasma instability of carbamathione is indicative of an enzymatic degradation pathway. 

Therefore it is important that plasma samples are processed within 10 minutes of thawing. 

Since sample processing consists out of a simple protein precipitation step, this is not 

problematic. The freeze-thaw stability of carbamathione was analyzed by subjecting 

enriched samples to three freeze-thaw cycles over seven days (table 3). No significant 

degradation was observed over this time frame.

3.4 Method Linearity, Accuracy, and Precision

The linearity, accuracy and precision of the method were determined by the analysis of 

calibration plots ranging from 0.5 nM to 50.0 nM spiked plasma concentration (n=5 per 

concentration) for four consecutive days. Intra- and inter-run accuracy and precision were 

typically within 10% of the target value. A typical calibration curve was described by the 

following linear equation: y = 1.978 × − 0.039 (y = dimension less number obtained by 

normalization of the carbamathione response to the internal standard; x = concentration of 

carbamathione in nM). The lower limit of quantification (LLOQ) with acceptable accuracy 

and precision (<10%) was determined to be at 0.5 nM in plasma. While FDA guidelines 

state that LLOQ precisions of < 20% are acceptable, the LLOQ was not challenged further 

as 0.5 nM was determined to be adequate for the current investigation. The limit of detection 

was not challenged below 0.1 nM in plasma, while the 0.1 nM plasma sample still revealed 

S/N > 5. The method exhibits good intra- and inter-run linearity with R2 = 0.9972 and R2 = 

0.9976, respectively. Accuracy values were within 5% of expectation and sample precision 

was within 10% over the validated range (Table 4).

3.5 Human Plasma Levels

The developed carbamathione plasma assay methodology was successfully applied to 

determination of samples obtained from a disulfiram-dosed volunteer. Figure 4 depicts a 

typical chromatogram of the results obtained, in this case that of a sample obtained one hour 

after dosing where a chromatographic peak is observed that represents carbamathione 

present in a concentration of 2.1 nM. Interestingly, the various samples show an unidentified 

peak (Figure 4), which was detected in every sample containing carbamathione. This peak 

results from the MRM transition used to detect carbamathione and also matches the 

carbamathione profile in plasma. It is highly probable that this unknown substance results 

from a disulfiram metabolite possessing the carbamoyl (100 m/z) fragment. The plasma 
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concentration profile obtained as a function of time (1, 2, 4, 6, 8, and 10 hours) subsequent 

to oral dosing of a healthy volunteer is shown in Figure 5.

4.0 Conclusion

A selective and sensitive method for the detection and quantification of carbamathione in 

human plasma has been developed. The method exhibits accuracy and precision of 5% and ≤ 

10 percent, respectively, and achieves good chromatographic throughput (8 min injection to 

injection with a methanol:water gradient). Detection was accomplished by tandem mass 

spectrometry in positive ion mode, using SRM and a structural homolog, S-(N,N-di-i-
propylcarbamoyl)glutathione, Figure 2,E , as the internal standard. In human plasma 

samples, the limit of quantification and detection were 0.5 nM and 0.1 nM, respectively. The 

rapid chromatographic cycle and simple sample pretreatment allow for a high sample 

throughput, which is very desirable for bioanalytical methodology required to support any 

clinical investigation. Furthermore, the method was successfully applied to biological 

samples and used to determine the plasma profile of carbamathione in a single human 

volunteer. The analysis of disulfiram-dosed volunteer plasma samples resulted in the 

discovery of a compound peak having a similar plasma-time profile as carbamathione. The 

observed compound contains a 100 m/z fragment, which is highly suggestive that it is 

related to the carbamoyl fragment observed for carbamathione.
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Figure 1. Metabolites of disulfiram referred to in this work
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Figure 2. 
HPLC SRM of a plasma sample obtained from a female volunteer one hour after oral 

administration of disulfiram, 250 mg. (see Human Studies).
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Figure 3. Plasma profile obtained from a female volunteer after oral administration of 250 mg of 
disulfiram. (see Human Studies)
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Figure 4. 
Potential internal standards and their CID fragmentation: A, S-n-butylglutathione; B, S-(N-

n-propylcarbamoyl)glutathione; C, S-(N-n-butylcarbamoyl)glutathione; D, S-(N-n-

pentylcarbamoyl)glutathione; E, S-(N,N-di-n-propylcarbamoyl)glutathione; F, 

carbamathione. Structures are annotated with the mass in the spectrum, backbone fragments 

have an additional proton to that suggested by the bars.
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Figure 5. 
A: HPLC/SRM chromatograms of carbamathione and 2B: Five potential internal standards 

A: S-n-butylglutathione, B: S-(N-n-propylcarbamoyl)glutathione, C: S-(N-n-

butylcarbamoyl)glutathione, D: S-(N-n-pentylcarbamoyl)glutathione, E: S-(N,N-di-i-
propylcarbamoyl)glutathione. SRM transitions are in Table 1, 100 nM solutions of each 

substance were injected.
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Table 3

Freeze-thaw stability of carbamathione.

Carbamathione Concentration (μM)

Nominal Measured RSD (%)

Day 1 100 107.2 5.9

150 158.7 4.4

200 202.0 1.7

Day 3 100 119.5 6.7

150 154.4 2.1

200 189.1 4.4

Day 7 100 110.8 3.2

150 139.4 8.3

200 192.7 12.2
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