743 research outputs found

    NASA research in supersonic propulsion: A decade of progress

    Get PDF
    A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described

    Friction and Pressure Drag of Boundary-Layer Diverter Systems at Mach Number of 3.0

    Get PDF
    An experimental investigation was performed at a Mach number of 3.0 to determine the friction and pressure drags of a pylon and a 20 deg- and a 40 deg-included-angle wedge diverter over a range of Reynolds number. The results indicated that the measured friction drag coefficients agreed reasonably with that predicted by flat-plate theory. The pressure drag coefficients of the 20 and 40 deg wedges agreed with those presented in the literature. The total drag coefficient of the pylon and the 20 deg wedge diverter was about 0.36, based on diverter frontal area, while the drag coefficient of the 40 deg wedge was about 0.47

    An application of the finite-discrete element method in the simulation of ceramic breakage: methodology for a validation study for alumina specimens

    Get PDF
    Alumina (aluminum oxide, Al2O3) particles are pelletised and fired to produce high porosity catalyst pellets of complex shapes. These pellets fill cylindrical reactor columns with particulate packing structures that are key to the in-service performance, but will suffer breakages which impact on catalyst performance. The combined FiniteDiscrete Element Method (FEMDEM) is ideally suited to the simulation of both the multi-body pellet dynamic packing and quasi-static interactions as well as the stress field of each individual pellet, its deformations and fragmentation. The application of FEMDEM fracture modelling to a fine-grained brittle and porous material is novel. This paper presents a methodology for a validation study through comparison with three pointbending and Brazilian tests and discusses FEMDEM's potential in modelling multi-body fragile systems

    Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights

    No full text
    Diurnal cycles provide a tractable system to study the response of metabolism and growth to fluctuating temperatures. We reasoned that the response to daytime and night temperature may vary; while daytime temperature affects photosynthesis, night temperature affects use of carbon that was accumulated in the light. Three Arabidopsis thaliana accessions were grown in thermocycles under carbon-limiting conditions with different daytime or night temperatures (12 to 24 degrees C) and analyzed for biomass, photosynthesis, respiration, enzyme activities, protein levels, and metabolite levels. The data were used to model carbon allocation and growth rates in the light and dark. Low daytime temperature led to an inhibition of photosynthesis and an even larger inhibition of growth. The inhibition of photosynthesis was partly ameliorated by a general increase in protein content. Low night temperature had no effect on protein content, starch turnover, or growth. In a warm night, there is excess capacity for carbon use. We propose that use of this capacity is restricted by feedback inhibition, which is relaxed at lower night temperature, thus buffering growth against fluctuations in night temperature. As examples, the rate of starch degradation is completely temperature compensated against even sudden changes in temperature, and polysome loading increases when the night temperature is decreased
    corecore