357 research outputs found

    Factors affecting the Faradaic efficiency of Fe(0) electrocoagulation

    Get PDF
    Electrocoagulation (EC) using Fe(0) electrodes is a low cost water treatment technology that relies on efficient production of Fe(II) from the electrolytic dissolution of Fe(0) electrodes (i.e. a high Faradaic efficiency). However, the (electro)chemical factors that favor Fe(0) oxidation rather than O2 evolution during Fe(0) EC have not been identified. In this study, we combined electrochemical methods, electron microscopy and Fe measurements to systematically examine the interdependent effects of current density (i), anodic interface potential (EA) and solution chemistry on the Faradaic efficiency. We found that Fe(0) oxidation was favored (Faradaic efficiency >0.85) in chloride and bromide solutions at all i, whereas carbonate, phosphate, citrate, and nitrate solutions lead to Faradaic efficiencies <0.1. The anodic reaction (i.e. Fe(0) oxidation or O2 evolution) only depended on i in the sulfate and formate solutions. Experiments in binary-anion solutions revealed that molar ratios of [HCO3−]/[Cl−] near 100 and [NO3−]/[Cl−] near 20 separated the electrochemical domains of Fe(0) oxidation and O2 evolution in the EC system. These molar ratios were supported by experiments in synthetic groundwater solutions. We also found that the EA vs i curves for solutions with poor Faradaic efficiency overlapped but were situated 2–4 V vs Ag/AgCl higher than those of solutions with high Faradaic efficiency. Therefore, the position of the EA vs i curve, rather than the EA alone, can be used to determine unambiguously the reaction occurring on the Fe(0) anode during EC treatment

    Brands in international and multi‐platform expansion strategies: economic and management issues

    Get PDF
    Powerful media branding has historically facilitated successful international expansion on the part of magazine and other content forms including film and TV formats. Multi-platform expansion is now increasingly central to the strategies of media companies and, as this chapter argues, effective use of branding in order to engage audiences effectively and to secure a prominent presence across digital platforms forms a core part of this. Drawing on original research into the experience of UK media companies, this chapter highlights some of the key economic, management and socio-cultural issues raised by the ever-increasing role of brands and branding in the strategies of international and multi-platform expansion that are increasingly common- place across media

    How to drive phloem gene expression? A case study with preferentially expressed citrus gene promoters.

    Get PDF
    New approaches for developing disease-resistant genetically modified organisms have included specific targets for gene expression to enhance the chances for pathogen control. Gene expression driven by phloem-derived Citrus sinensis gene promoters could be evaluated and compared with the expression induced by a strong constitutive promoter in the same tissue, leading to the production of transgenic sweet oranges potentially more resistant to diseases caused by phloem-limited bacteria. ?Carrizo? citrange [Poncirus trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] was transformed, via Agrobacterium tumefaciens, with the binary vector pCAMBIA2301 bearing the uidA gene (?-glucuronidase) driven by the CaMV35S constitutive promoter (CaMV35S::uidA) or by the CsPP2.B1 (CsPP2.B1::uidA) or by the CsVTE2 (CsVTE2::uidA) citrus promoters. In vitro regenerated shoots were grafted onto ?Rangpur? lime (C. limonia Osbeck). The genetic transformation was confirmed by Southern blot analyses. uidA gene expression was evaluated by RT-qPCR, and gene histolocalization controlled by these three promoters was accessed by X-GLUC treated stem sections. uidA gene expression exhibited by tissue-specific promoters was overall lower than from the constitutive promoter CaMV35; however, constructs driven by tissuespecific promoters may lead to expression in restricted tissues. CsPP2.B1 and CsVTE2 promoters can be considered adequate for the utilization in gene constructs aiming disease resistance

    Homogeneous nucleation of colloidal melts under the influence of shearing fields

    Full text link
    We study the effect of shear flow on homogeneous crystal nucleation, using Brownian Dynamics simulations in combination with an umbrella sampling like technique. The symmetry breaking due to shear results in anisotropic radial distribution functions. The homogeneous shear rate suppresses crystal nucleation and leads to an increase of the size of the critical nucleus. These observations can be described by a simple, phenomenological extension of classical nucleation theory. In addition, we find that nuclei have a preferential orientation with respect to the direction of shear. On average the longest dimension of a nucleus is along the vorticity direction, while the shortest dimension is preferably perpendicular to that and slightly tilted with respect to the gradient direction.Comment: 10 pages, 8 figures, Submitted to J. Phys.: Condens. Matte

    Genetic transformation of Citrus sinensis with Citrus tristeza virus (CTV) derived sequences and reaction of transgenic lines to CTV infection

    Get PDF
    Transgenic Citrus sinensis (L.) Osb. plants, cvs. Valencia and Hamlin, expressing Citrus tristeza virus (CTV) derived sequences were obtained by genetic transformation. The gene constructs were pCTV-CP containing the 25 kDa major capsid protein gene (CTV-CP), pCTV-dsCP containing the same CTV-CP gene in an intron-spliced hairpin construct, and pCTV-CS containing a 559 nt conserved region of the CTV genome. The transgenic lines were identified by PCR and the transgene integration was confirmed by Southern blot. Transgene mRNA could be detected in most transgenic lines containing pCTV-CP or pCTV-CS transgene. The mRNA of pCTV-dsCP transgene was almost undetectable, with very light bands in most analyzed plants. The transgene transcription appears to be closely linked to the type of gene construct. The virus challenge assays reveals that all transgenic lines were infected. However, it was possible to identify propagated clones of transgenic plants of both cultivars studied with a low virus titer, with values similar to the non-inoculated plants (negative control). These results suggested that the transgenic plants present some level of resistance to virus replication. The higher number of clones with low virus titer and where mRNA could not be detected or was presented in a very light band was found for pCTV-dsCP-derived transgenic lines561162166CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    A subgrain‐size piezometer calibrated for EBSD

    Get PDF
    We calibrate a subgrain‐size piezometer using electron backscatter diffraction (EBSD) data collected from experimentally deformed samples of olivine and quartz. Systematic analyses of angular and spatial resolution test the suitability of each dataset for inclusion in calibration of the subgrain‐size piezometer. To identify subgrain boundaries, we consider a range of critical misorientation angles and conclude that a 1° threshold provides the optimal piezometric calibration. The mean line‐intercept length, equivalent to the subgrain‐size, is found to be inversely proportional to the von Mises equivalent stress for datasets both with and without the Holyoke and Kronenberg (2010) correction. These new piezometers provide stress estimates from EBSD analyses of polymineralic rocks without the need to discriminate between relict and recrystallised grains and therefore greatly increase the range of rocks that may be used to constrain geodynamic models

    Structure of nanoparticles embedded in micellar polycrystals

    Full text link
    We investigate by scattering techniques the structure of water-based soft composite materials comprising a crystal made of Pluronic block-copolymer micelles arranged in a face-centered cubic lattice and a small amount (at most 2% by volume) of silica nanoparticles, of size comparable to that of the micelles. The copolymer is thermosensitive: it is hydrophilic and fully dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into micelles at room temperature, where the block-copolymer is amphiphilic. We use contrast matching small-angle neuron scattering experiments to probe independently the structure of the nanoparticles and that of the polymer. We find that the nanoparticles do not perturb the crystalline order. In addition, a structure peak is measured for the silica nanoparticles dispersed in the polycrystalline samples. This implies that the samples are spatially heterogeneous and comprise, without macroscopic phase separation, silica-poor and silica-rich regions. We show that the nanoparticle concentration in the silica-rich regions is about tenfold the average concentration. These regions are grain boundaries between crystallites, where nanoparticles concentrate, as shown by static light scattering and by light microscopy imaging of the samples. We show that the temperature rate at which the sample is prepared strongly influence the segregation of the nanoparticles in the grain-boundaries.Comment: accepted for publication in Langmui
    • 

    corecore