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A B S T R A C T

Electrocoagulation (EC) using Fe(0) electrodes is a low cost water treatment technology that relies on efficient
production of Fe(II) from the electrolytic dissolution of Fe(0) electrodes (i.e. a high Faradaic efficiency).
However, the (electro)chemical factors that favor Fe(0) oxidation rather than O2 evolution during Fe(0) EC have
not been identified. In this study, we combined electrochemical methods, electron microscopy and Fe mea-
surements to systematically examine the interdependent effects of current density (i), anodic interface potential
(EA) and solution chemistry on the Faradaic efficiency. We found that Fe(0) oxidation was favored (Faradaic
efficiency> 0.85) in chloride and bromide solutions at all i, whereas carbonate, phosphate, citrate, and nitrate
solutions lead to Faradaic efficiencies< 0.1. The anodic reaction (i.e. Fe(0) oxidation or O2 evolution) only
depended on i in the sulfate and formate solutions. Experiments in binary-anion solutions revealed that molar
ratios of [HCO3

−]/[Cl−] near 100 and [NO3
−]/[Cl−] near 20 separated the electrochemical domains of Fe(0)

oxidation and O2 evolution in the EC system. These molar ratios were supported by experiments in synthetic
groundwater solutions. We also found that the EA vs i curves for solutions with poor Faradaic efficiency over-
lapped but were situated 2–4 V vs Ag/AgCl higher than those of solutions with high Faradaic efficiency.
Therefore, the position of the EA vs i curve, rather than the EA alone, can be used to determine unambiguously
the reaction occurring on the Fe(0) anode during EC treatment.

1. Introduction

Electrocoagulation (EC) using Fe(0) electrodes is a promising, low
cost treatment technology for drinking water and wastewater. This
technology is particularly applicable in decentralized and rural areas
because of its low infrastructure requirements, ease of use and potential
for scalability [1,2]. While EC systems are often accompanied by sup-
plementary treatment steps, including settling tanks and filters [3], the
technology centers on applying an electric current to Fe(0) electrodes in
contact with an electrolyte solution to promote the oxidative release of
soluble Fe(II) ions [4,5]. The Fe(II) ions migrate from the Fe(0) anode
surface to the bulk solution, where contaminant removal occurs by
several possible pathways. For example, Fe(II) ions can immobilize
target species through direct reduction reactions (e.g. chromate) [6–9]
or they can be oxidized by dissolved oxygen and Fenton-type inter-
mediates (e.g. *O2

−, H2O2, and Fe(IV) or *OH [10,11]) to produce re-
active Fe(III) (oxyhydr)oxides that remove contaminants by sorption
(e.g. arsenic [12,13], heavy metals [14], dyes [15,16], perfluoroalkyl
acids [17], and pathogens [18]). In addition, the oxidized Fe(II) ions

form solid flocs that can be used as a pre-treatment step for additional
purification processes, such as membrane filtration or advanced oxi-
dation [19,20]. In recent years, the molecular scale mechanisms of
contaminant removal in the bulk solution during Fe(0) EC treatment
have been the focus of considerable research [19,21–23]. However, few
EC studies have examined the electron transfer reactions occurring at
the Fe(0) anode [24,25], which are responsible for the production of Fe
(II). Because Fe(0) EC treatment relies on the production of Fe(II) from
the Fe(0) anode [26,27], it is essential to understand the factors that
promote efficient Fe(II) generation.

In EC, the concentration of Fe(II) (mol/L) generated at the Fe(0)
anode is related to the applied current by Faraday’s law:

[Fe] = (I·t)/(n·F·V) (1)

where I represents the current (C/s) applied for time, t (s), n represents
the number of electrons transferred (n= 2 for Fe(II) production, con-
sistent with previous work [4]), F, the Faraday constant (96,485 C/mol)
and V, the solution volume (L). From Eq. (1), we can define the Faradaic
efficiency as the Fe concentration measured in the bulk solution,
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normalized by the theoretical Fe(II) concentration calculated by Fara-
day’s law. Therefore, a Faradaic efficiency near 1 indicates the pro-
duction of Fe(II) and optimum system performance. Conversely, a drop
in Faradaic efficiency, and thus treatment efficiency, can occur when
the applied current drives the anodic oxidation of H2O or coexisting
solutes, rather than Fe(0). As shown in Fig. 1a, the anodic oxidation of
Fe(0) to form Fe(II) occurs at a low standard redox potential (E0),
whereas the oxidation of H2O, chloride, or bromide can be favored as
the anodic interface potential increases above 1.0 V vs Ag/AgCl.
Therefore, knowledge of the interface potential, which relates to the
thermodynamic driving force of electrode reactions [28], is critical to
deconvolute the factors that affect the Faradaic efficiency of Fe(0) EC.

Based on previous research, we can identify a number of (electro)
chemical parameters that can potentially influence the Faradaic effi-
ciency and interface potential [24,25,29]. For example, the Butler-
Volmer relationship shows that the applied current is directly propor-
tional to the interface potential:

i = I/A= i0·[(exp(αA·EA) − (exp(αC·EC)] (2)

where i represents the current density (mA/cm2), A, the electrode
surface area (cm2), i0, the exchange current density (mA/cm2), αA and
αC represent constants (detailed in Supplementary material) and EA and
EC represent the anode and cathode interface potentials (V). Therefore,
an increase in i (or I for a constant electrode surface area) can increase
the anodic interface potential (EA) to levels high enough to yield O2, Cl2
or Br2 (Fig. 1a), which would decrease the Faradaic efficiency. This
relationship between i and the Faradaic efficiency in Al(0) and Fe(0) EC
studies has been reported for a limited range of electrolyte solutions
(e.g. nitrate [30] and sulfate [24,25,29]). However, the absence of EA
measurements in most Fe(0) EC investigations has prevented reliable
explanations of the impact of i on the Faradaic efficiency.

Another factor likely to influence the Faradaic efficiency is the ionic
composition of the solution. For example, Arroyo et al. (2010) mea-
sured a Faradaic efficiency of ∼1.0 for Fe(0) EC experiments in a
chloride solution [31], whereas a reduced Faradaic efficiency has been
reported in sulfate and nitrate solution at circumneutral pH [25,30].
However, these previous Fe(0) EC studies investigated a limited range
of i and did not examine the impact of a wide variety of electrolyte
solutions. A number of other inorganic and organic ions that are ubi-
quitous in natural systems, including carbonate, phosphate, formate

and citrate, have been shown to interact with Fe(0) surfaces to inhibit
the oxidation of Fe(0) in passive corrosion systems [32,33]. The impact
of these environmentally relevant ions on the Faradaic efficiency of Fe
(0) EC is poorly constrained, leading to a critical knowledge gap. Be-
cause Fe(0) EC treatment for a wide range of influent compositions
hinges on maintaining a high Faradaic efficiency and minimizing
electrode passivation, it is essential to investigate systematically the
relationship between i, EA and Faradaic efficiency in a diverse set of
solution compositions.

In this work, our objective was to determine the (electro)chemical
factors that govern the Faradaic efficiency of Fe(0) EC. To this end, we
investigated the interdependent effects of i, EA and solution composi-
tion by combining time dependent measurements of EA and total Fe
released from the Fe(0) anode as a function of i and solution chemistry.
To encompass the range of current densities likely applied in Fe(0) EC
field treatment [3], the i of EC experiments was adjusted over two or-
ders of magnitude (0.25–50 mA/cm2). The impact on the Faradaic ef-
ficiency of a variety of dissolved species common in natural waters was
studied by systematically varying the ionic composition and pH of the
solution, building in complexity from single and binary anion systems
to synthetic groundwater matrices. Micrometer scale modifications on
the surface of Fe(0) anodes used in the EC experiments were probed by
scanning electron microscopy (SEM). Our approach allowed us to elu-
cidate the impact of solution chemistry and EC operating parameters on
the redox reactions occurring at the Fe(0) anode, which has not been
investigated previously and is critical for predicting and optimizing the
performance of Fe(0) EC treatment under a wide range of source water
chemistry. The ultimate aim of this study was to identify simple and low
cost strategies to improve Fe(0) EC treatment in waters having com-
positions that result in poor Faradaic efficiency.

2. Materials and methods

2.1. Preparation of the electrolyte solutions

All chemicals used to prepare the stock solutions were reagent grade
and all glassware was acid washed and rinsed three times with
18 MΩ·cm Milli-Q deionized (DI) water prior to use. Stock solutions of
sodium chloride (NaCl, 0.5 M), potassium bromide (KBr, 0.2 M), so-
dium sulfate (Na2SO4, 0.2 M), sodium bicarbonate (NaHCO3, 0.5 M),

Fig. 1. A) Standard redox potentials (E0) for half reactions
that can occur on the Fe(0) anode surface during EC. E0 is
reported for standard state conditions in units of V vs Ag/
AgCl, which is a +0.2 V difference relative to the standard
hydrogen electrode (SHE) [50]. B) Schematic representation
of the set up for electrochemical experiments.
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sodium phosphate (Na2HPO4, 0.2 M), sodium nitrate (NaNO3, 0.2 M),
sodium formate (NaHCOO, 0.2 M) and sodium citrate (Na3C3H5O
(COO)3, 0.2 M) were stored in air tight containers at room temperature.
Single anion electrolyte solutions were produced by combining stock
solutions and air saturated DI water to yield 10 mM concentrations of
chloride, bromide, formate, nitrate and carbonate and 5 mM con-
centrations of sulfate, phosphate and citrate. In a separate group of
experiments, we varied the molar ratio of [NO3

−]/[Cl−] and
[HCO3

−]/[Cl−] in binary anion electrolyte solutions by diluting ni-
trate, carbonate and chloride stock solutions in air saturated DI water.
In these experiments, at least one anion was always 10 mM and the
other was lowered to yield [NO3

−]/[Cl−] or [HCO3
−]/[Cl−] molar

ratios ranging from 0.1 to 1000. In Table 1, we summarize the com-
position and conductivity of all single anion electrolyte solutions.

After adding all components to the single or binary anion solutions,
the initial pH was set to 7.5 ± 0.5, unless otherwise noted, using small
amounts of NaOH or the respective acid of the electrolyte anion (i.e.
H3PO4 for phosphate experiments, HNO3 for nitrate experiments, etc).
The amount of acid/base added changed the anion concentration by
less than 1%. Preliminary electrochemical experiments at pH 7.5 (de-
scribed below) revealed that pH did not drift substantially (< 0.5 units)
during the reaction. In addition to experiments performed at cir-
cumneutral pH, we also examined solutions with a range of pH from
4.0 ± 0.5 to 11.0 ± 0.5 for sulfate and phosphate single anion solu-
tions. In these experiments, solution pH drifted to neutral during pre-
liminary EC experiments. Therefore, we added dilute concentrations of
H2SO4 and H3PO4 (pH 4 experiments) or NaOH (pH 11 experiments)
during electrolysis to minimize pH drift (< 0.5 units). The amount of
acid used to decrease pH during experiments increased the anion con-
centration by<10%.

In addition to single and binary anion electrolyte solutions, we also
prepared a series of synthetic groundwater matrices (Table 2), which
were designed to mimic a range of contaminated groundwaters that are
candidates for Fe(0) EC field treatment [34–38]. For arsenic con-
taminated groundwater (pH 7.5), we prepared a synthetic Bangladesh
groundwater (SBGW) electrolyte solution following a recipe derived
from a British Geological Survey analysis of thousands of groundwater
wells in Bangladesh [39]. For groundwater co-contaminated by ur-
anium and nitrate (pH 3.5–5.5), which can occur at sites of uranium
enrichment [37], we prepared two nitrate contaminated groundwaters
(NO3-GW 1 and NO3-GW 2) that were made to mimic the composition
of contaminated groundwaters reported previously [40–44]. Because of
their trace concentrations, arsenic and uranium were excluded from the
synthetic groundwater recipes.

2.2. Electrochemical experiments

Electrochemical experiments were performed with a Metrohm-
Autolab potentiostat (Utrecht, the Netherlands) operated in a three
electrode system (Fig. 1b). The electrochemical cell consisted of an Ag/

AgCl reference electrode and Fe(0) working and counter electrodes
(spaced 2 cm apart). The trace metal composition of the Fe(0) elec-
trodes used in our study was reported previously [45]. Before each
experiment, the Fe(0) electrodes were cleaned and polished with fine
grained sandpaper. Because a positive electrochemical potential was
applied to the working electrode in each of our experiments, we refer to
the Fe(0) working electrode as the anode and the Fe(0) counter elec-
trode as the cathode in this work. Experiments were initiated by ap-
plying a galvanostatic current to the electrochemical cell with the
electrolyte solution mixed by a magnetic stir bar. Experiments were
performed open to the atmosphere, which allows for CO2(g) dissolution
but equilibrium speciation calculations predict a maximum of
∼0.1 mM HCO3

− and 1 μM CO3
2− in typical electrolyte solutions,

which would not significantly affect the results. Furthermore, the EC
experiments are so short that only slight CO2(g) dissolution is expected.
The i (0.25–50 mA/cm2) was set by modifying the applied current
(2–400 mA) while maintaining the active surface area of the Fe(0)
anode at 8 cm2. The potentiostat was operated in chronoamperometric
mode, with measurements of EA occurring with 1 s resolution. In typical
experiments, we applied a total charge dosage of 40 C/L to a 200 mL
electrolyte solution (0.2 mM Fe(II) by Eq. (1)), which corresponds to
total electrolysis times of ∼0.5 to 20 min. To avoid long electrolysis
times however, the solution volume was reduced to 125 mL for ex-
periments with i ≤ 1 mA/cm2 and the charge dosage was 20 C/L for
experiments at i≤ 0.5 mA/cm2.

At various time steps along the reaction, aliquots of the suspension
were removed using a wide mouthed pipette and immediately acidified
in 4% HNO3 for analysis of total Fe by atomic absorption spectrometry
(AAS, Perkin Elmer AAnalyst 800) at a wavelength of 248.3 nm.
Although our measurements of total Fe do not discriminate between Fe
(II) and Fe(III), the calculation of Faradaic efficiency does not rely on
direct measurements of Fe(II) because the total Fe concentration gen-
erated by EC is directly related to the number of electrons transferred
between the Fe(0) electrode and the dissolved Fe species (i.e. n = 2 for
Fe(II) and n = 3 for Fe(III)). Therefore, if Fe(III) were the dominant
species generated, the Faradaic efficiency would be 33% lower than
that obtained if Fe(II) is produced. In addition, for experiments at the
largest i, chemical dissolution of Fe(0) should not contribute sig-
nificantly to the Faradaic efficiency because of the rapid time scales of
these experiments (< 1 min) [46]. For each data point, the Faradaic
efficiency was determined by normalizing the experimental Fe con-
centration (Feexp, mg/L) measured with AAS by the theoretical Fe
concentration (Feth, mg/L) calculated from Eq. (1), assuming the pro-
duction of Fe(II). In our study, a Faradaic efficiency (Feexp/Feth) of 0
indicates that all charge that passed through the EC cell went to reac-
tions other than Fe(0) oxidation, whereas a Faradaic efficiency of 1 is

Table 1
Composition, conductivity and EA (i= 1 mA/cm2) for single anion electrolyte solutions.

Electrolyte Anion
Concentration
(mM)

Ionic
Strength
(M)

Conductivitya

(dS/m)
EA at i=1
mA/cm2 (V
vs Ag/AgCl)

Chloride 10 0.010 0.79 −0.1
Bromide 10 0.010 0.79 0.0
Sulfate 5 0.015 1.18 0.1
Carbonate 10 0.010 0.79 1.6
Phosphate 5 0.015 1.18 1.3
Nitrate 10 0.010 0.79 1.6
Formate 10 0.010 0.79 1.4
Citrate 5 0.030 2.36 1.5

a Conductivity was determined using the Griffin-Jurinak relation [62].

Table 2
Compositions and conductivity of the synthetic groundwaters.

Electrolyte SBGWa NO3-GW 1 NO3-GW 2
Ionic Strength 0.046 0.153 0.341
Conductivityb (dS/m) 3.53 11.7 26.2
Ionic Composition (mM) pH 7.5 5.5 3.5

Ca2+ 2.5 5.2 25.1
Mg2+ 1.6 3.5 6.8
HPO4

2- 0.1 0 0
SO4

2- 0 15 10
[HCO3-] 8.2 10 0
NO3- 0 17.3 133
Cl- 4.1 0.5 7.3
[HCO3

-]/[Cl] 2.0 20 0
[NO3

-]/[Cl] 0 34.6 18.2

a SBGW also contained 1.1 mM H4SiO4. Sodium is not included in this table but is used
to balance electroneutrality. The total bicarbonate is represented by [HCO3

−]. The open
circuit potential was −0.2 V vs Ag/AgCl for all solutions except NO3-GW 2, which had an
open circuit potential of −0.5 V vs Ag/AgCl.

b Conductivity was determined using the Griffin-Jurinak relation [62].
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consistent with the electrochemical production of only Fe(II). Our re-
sults are plotted as the average and standard deviation, where applic-
able, of replicated experiments, but we note that the variation for many
data points (experiments with Faradaic efficiency< 0.1 and most in-
terface potential measurements) was smaller than the size of the plotted
data point.

2.3. Scanning electron microscopy with energy dispersive X-ray
spectroscopy

Scanning electron microscopy (SEM) and energy dispersive X-ray
spectroscopy (EDXS) were used to track surface modifications of the Fe
(0) anodes caused by electrolysis. Iron anode samples used in four
different electrolyte solutions were prepared by performing 10 of the
previously described EC experiments over 3 d in each of the chloride,
bromide, nitrate, and citrate solutions. Anodes were rinsed briefly with
DI water after each EC experiment and were air dried overnight, which
is similar to the operation and drying cycles of electrodes during long
term Fe(0) EC field treatment [3]. The surface morphology (SEM) and
chemical composition (EDXS) of the Fe(0) anodes were examined be-
fore electrolysis (0 runs, cleaned and polished) and after 2 runs (1 d), 6
runs (2 d) and 10 runs (3 d). SEM images were collected with a FEI
Quanta 3D FEG SEM equipped with a voltage contrast detector. EDXS
spectra were obtained using an Oxford X-Max 20 mm2 EDXS spectro-
meter. An accelerating voltage of 20 kV and a current of 8 nA were used
during data collection. A conductive coating was not used on the Fe(0)
anodes.

3. Results

3.1. Time dependent Fe concentration and anodic interface potential

In Fig. 2, we present an overview of representative data obtained in
each electrochemical experiment (i= 1 mA/cm2) for three electrolyte
solutions: chloride, sulfate and nitrate. The Fe generated (Feexp) in both
the chloride and sulfate solutions follows closely the theoretical value
(Feth) for the production of Fe(II), which is highlighted by one of the
shaded regions in Fig. 2a. A subtle trend in the production of Fe with
time is also observed for these two electrolytes, with slightly decreased
Feexp values relative to Feth assuming the constant production of Fe(II)
(Eq. (1)). Nevertheless, the Feexp in the chloride and sulfate electrolyte
solutions generally increased linearly with time and a Faradaic effi-
ciency>0.85 was obtained at all time steps. By contrast, the Feexp in
the nitrate solution was negligible, yielding a Faradaic efficiency<0.1
throughout electrolysis.

The time dependent anodic interface potential (EA) measurements
for the three electrolyte solutions are shown in Fig. 2b. The EA in the
nitrate solution was substantially higher (1.6 V vs Ag/AgCl) than that
measured in the chloride or sulfate solutions (< 0.5 V vs Ag/AgCl),
which is consistent with the differences in time dependent Feexp. For the
chloride and sulfate solutions, the EA at i= 1 mA/cm2 never increased
above the E for O2 or Cl2 production (E ≈ 1.02 V vs Ag/AgCl for O2 at
pH 7; E≈ 1.68 V vs Ag/AgCl for Cl2 at 10 mM chloride). This result
indicates that significant anodic production of O2 and Cl2 was unlikely.
Although the EA in the sulfate solution decreased slightly over time, it
was relatively stable in the chloride and sulfate solutions after the onset
of electrolysis. There were no rapid fluctuations to indicate a change in
the dominant anodic redox reaction.

Analogous time dependent measurements of Feexp and EA were ob-
tained for every electrochemical experiment in our study. However, to
simplify the presentation of our results, we note that each data point
presented in subsequent figures corresponds to the Faradaic efficiency
at the end of electrolysis (i.e. the final time step in Fig. 2a) and EA
measured at the midpoint of electrolysis.

3.2. Influence of solution composition

3.2.1. Chloride, bromide and sulfate
The Faradaic efficiencies (top panels) and EA (bottom panels) are

plotted as a function of a wide range of i (0.25–50 mA/cm2) for 8 dif-
ferent inorganic and organic single anion solutions in Fig. 3. The Far-
adaic efficiencies for the chloride and bromide electrolytes were largely
independent of i, with values> 0.8 observed at all i (Fig. 3a). Coin-
ciding with these high Faradaic efficiencies, the Fe(0) anode surfaces
after electrolysis in both chloride and bromide solutions developed
macroscopic surface modifications that were low in contrast on SEM
images, consistent with the formation of less electron dense Fe (oxy-
hydr)oxide corrosion layers (Fig. 4 and Figs. S1 and S2 in the Supple-
mentary material). By contrast, the Faradaic efficiency in the sulfate
solution was strongly dependent on i. At i < 3 mA/cm2, the Faradaic
efficiency was>0.9, which was similar to that for the bromide and
chloride solutions. However, at i≥ 3 mA/cm2, the Faradaic efficiency
decreased to< 0.1, which indicates that Fe(II) generation was not the
dominant anodic reaction.

The shape and position of the EA vs i curves for the chloride and
bromide solutions matched closely (Fig. 3b), which is consistent with
their similar Faradaic efficiencies. On a log scale, the EA increased ex-
ponentially from −0.1 to>5.0 V vs Ag/AgCl with increases in i for
both the chloride and bromide solutions. However, there was a linear
relationship between EA and i when i was plotted on a linear scale (Fig.
S3). Despite the high Faradaic efficiencies in the chloride and bromide
solutions, the EA at i > 20 mA/cm2 exceeded the standard state E0 for
the O2/H2O, Cl2/Cl−, and Br2/Br− redox couples. Although experi-
ments at high i yielded EA well above the potential required for evo-
lution of Cl2 (E ≈ 1.68 V vs Ag/AgCl), Br2 (E ≈ 1.41 V vs Ag/AgCl) and
O2 (E ≈ 1.02 V vs Ag/AgCl), a high Faradaic efficiency was measured
and no bubble production was observed. These results indicate that EA

Fig. 2. Measurements of (A) Fe in the bulk electrolyte solution and (B) the anodic in-
terface potential as a function of time for selected solution compositions: 10 mM chloride
(crosses), 5 mM sulfate (circles), and 10 mM nitrate (squares). The i was 1 mA/cm2 and
the initial pH was 7.5. The shaded regions in (A) show the hypothetical Faradaic Fe
concentrations, assuming the production of Fe(II) and Fe(III).
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levels above 5.0 V vs Ag/AgCl do not necessarily entail significant O2

evolution or chloride/bromide oxidation in these solutions.
Consistent with the distinct i-dependence of the Faradaic efficiency

observed in the sulfate solution, the EA vs i curve for sulfate differs
relative to that of chloride and bromide. At i < 3 mA/cm2, the EA vs i
curve for sulfate follows that of chloride and bromide. However, a
nonlinear jump in EA occurs at i > 3 mA/cm2, leading to a ∼2 V vs
Ag/AgCl increase in EA relative to that of chloride and bromide elec-
trolyte solutions for i > 3 mA/cm2. Notably, this abrupt increase in EA
coincided with the dramatic decrease in the Faradaic efficiency ob-
served in the same i-range. This indicates the existence of a threshold i
in the sulfate solution that delineates the electrochemical domain of Fe
(0) oxidation.

3.2.2. Carbonate, phosphate and nitrate
In contrast to the chloride and bromide solutions, poor Faradaic

efficiencies were observed in the carbonate, phosphate and nitrate so-
lutions, regardless of i (Fig. 3c). Even for experiments performed at the
lowest i, which should lead to the lowest EA based on Eq. (2), the
Faradaic efficiency never exceeded 0.1 for these single anion solutions.
In addition, the Fe(0) anode showed no evidence for any Fe (oxyhydr)
oxide corrosion layers after 10 runs in the nitrate electrolyte (Fig. 4,
Figs. S1 and S2). This observation contrasts with the behavior of the
chloride and bromide solutions and is consistent with the passivation of
the anode surface [32,33]. Because the ionic strength of the nitrate and
halide ion electrolytes was identical (Table 1), these results imply that
ionic composition, rather than conductivity, plays a central role in
determining the Faradaic efficiency of Fe(0) EC.

The EA vs i curves for the carbonate, phosphate and nitrate elec-
trolytes had similar shape to that of chloride and bromide but were
uniformly offset by +2 to +4 V vs Ag/AgCl (Fig. 3d). The EA vs i curves
for the carbonate, phosphate and nitrate electrolytes overlap almost
perfectly, which is consistent with the similarly low Faradaic effi-
ciencies for these electrolytes. Interestingly, at i > 3 mA/cm2, the EA
measurements for these electrolytes are identical to those of the sulfate
electrolyte, which also had poor Faradaic efficiency in this i-range. The
high EA (> 1.4 V vs. Ag/AgCl) observed in the carbonate, phosphate
and nitrate solutions at all i was accompanied by the formation of gas
bubbles on the anode (Fig. S4) and poor Faradaic efficiency. In addi-
tion, dissolved O2 measurements in the nitrate solution (Fig. S5)

revealed a rapid increase in dissolved O2, with values reaching above
the air saturated maximum of approximately 9 mg/L, which provides
conclusive evidence for the anodic formation of O2 in these three so-
lutions.

3.2.3. Citrate and formate
The properties of the formate solution were most similar to those of

the sulfate solution, with the Faradaic efficiency exhibiting a strong i-
dependence (Fig. 3e). However, even at low i, the Faradaic efficiency in
the formate solution was never as high as for sulfate. The Faradaic ef-
ficiency in the formate solution also decreased gradually with i, i.e. a
transitional Faradaic efficiency near 0.5 was observed at i = 1 mA/cm2.
For the citrate solution, the Faradaic efficiency resembled that of the
nitrate solution, with negligible electrochemical Fe(0) oxidation
throughout the entire i-range. Furthermore, consistent with the nitrate
solution, the surface of the Fe(0) anode after 10 electrochemical ex-
periments in the citrate solution resembled that of a freshly polished Fe
(0) anode (Fig. 4, Figs. S1 and S2), indicating surface passivation.

The EA at the lowest i (highest Faradaic efficiency) in the formate
solution was similar to that of chloride/bromide, but at i > 1 mA/cm2,
the EA vs i curve followed that of nitrate. Similar to the results in the
sulfate solution, the crossover i between high and low Faradaic effi-
ciency in the formate solution coincided with an abrupt increase in EA.
For citrate, the position and shape of the EA vs i curve resembled that of
the nitrate solution, which is consistent with its poor Faradaic effi-
ciency.

3.3. Impact of pH on the Faradaic efficiency and EA

The influence of pH was examined in the sulfate and phosphate
solutions because these ions affected the Faradaic efficiency differently
in single anion systems (Fig. 3) and also have distinct pH dependent
speciation, i.e. the dominant sulfate species remains as SO4

2− above pH
3 (pKa1 = −3, pKa2 = 1.9), whereas phosphate deprotonates
(pKa1 = 2.1, pKa2 = 7.2, pKa3 = 12.7) [47]. For both sulfate and
phosphate solutions, the Faradaic efficiency and EA (i= 1 and 3 mA/
cm2) depended strongly on pH. At i-values of 1 and 3 mA/cm2, the
Faradaic efficiencies in the sulfate and phosphate solutions were above
1.0 at acidic pH (4.0 ± 0.5) and below 0.1 at basic pH (11.0 ± 0.5).
Faradaic efficiencies above 1.0 for both acidic sulfate and phosphate

Fig. 3. Faradaic efficiency (top panels) and
interface potential (bottom panels) as a
function of i for single anion electrolyte so-
lutions. In A) and B), the solutions consisted
of 10 mM chloride (open circles), 10 mM
bromide (grey circles) and 5 mM sulfate
(black circles). In C) and D), the solutions
contained 10 mM carbonate (open squares),
5 mM phosphate (grey circles) and 10 mM
nitrate (black squares). In E) and F), the
solutions consisted of 10 mM formate (open
triangles) and 5 mM citrate (black trian-
gles). For all solutions, pH was 7.5.
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solutions can be explained by chemical induced release of Fe, likely a
result of proton promoted Fe(0) oxidation. The major difference be-
tween the impact of pH in the sulfate and phosphate solutions is the
threshold pH and i at which the Faradaic efficiency changes from high
to low. For phosphate, efficient electrochemical Fe(0) oxidation was
only observed at acidic pH, whereas the Faradaic efficiency remained
high at circumneutral pH in the sulfate solution at i = 1 mA/cm2.

The same inverse relationship between Faradaic efficiency and EA
found in the single anion solutions was also observed in the sulfate and
phosphate solutions at different pH values. For example, the lowest EA
for both solutions was observed at acidic pH, which showed the highest
Faradaic efficiencies, whereas EA was greater than 1.0 V vs Ag/AgCl for
all samples with poor Faradaic efficiency. It is also noteworthy that
decreasing solution pH from 7.5 ± 0.5 to 4.0 ± 0.5 decreased the

Fig. 4. Scanning electron micrographs of a polished Fe(0) anode (A and
B), and Fe(0) anodes after 10 runs in various electrolyte solutions: bromide
(C and D), chloride (E and F), citrate (G and H), nitrate (I and J). The
panels on the right are magnified from the region in the dotted rectangles
on the left.
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open circuit potential (i.e. the EA in the absence of current) for both
solutions from ∼−0.1 to −0.5 V vs Ag/AgCl.

3.4. Faradaic efficiency in chloride containing, binary anion solutions

In Section 3.2, we found that the behavior of the chloride solution
contrasted that of the nitrate and carbonate solutions with respect to
Faradaic efficiency and EA. Therefore, to evaluate the relative impact of
ubiquitous ions that facilitate or prevent electrochemical Fe(0) oxida-
tion, we performed EC experiments (i= 1 mA/cm2) in binary anion
solutions with a wide range of nitrate to chloride or carbonate to
chloride molar ratios ([NO3

−]/[Cl−] or [HCO3
−]/[Cl−]

= 0.1–1000 mol/mol; [NO3
−] and [HCO3

−] = 10 mM for [NO3
−]/

[Cl−] and [HCO3
−]/[Cl−]≥ 1).

At [NO3
−]/[Cl−] molar ratios below 20, the nitrate and chloride

binary anion solution behaved similarly to the chloride solution, with
high Faradaic efficiencies and EA < 0.5 V vs Ag/AgCl. The persistence
of efficient electrochemical Fe(0) oxidation and low EA at [NO3

−]/
[Cl−] ratios near 1.0 indicates that the presence of chloride outweighs
the detrimental impacts of nitrate on an equimolar basis. However, at
[NO3

−]/[Cl−] ratios above 30, the Faradaic efficiency decreased and
the EA increased, leading to a solution with properties akin to the ni-
trate single anion system. These abrupt changes in Faradaic efficiency
and EA suggest that a narrow range of [NO3

−]/[Cl−] ratios near 20 to
30 separate the electrochemical domains of Fe(0) oxidation and O2

evolution in the Fe(0) EC system.
The relationship between Faradaic efficiency and EA with increasing

[HCO3
−]/[Cl−] was similar as that for the nitrate and chloride system,

but the transition from high to low Faradaic efficiency occurred at a
greater [HCO3

−]/[Cl−] ratio. Whereas the drop in Faradaic efficiency
and spike in EA occurred above [NO3

−]/[Cl−] ratios of 20, the critical
[HCO3

−]/[Cl−] ratio was 100. This indicates that carbonate solutions
require a lower chloride content to ensure efficient electrochemical Fe
(0) oxidation than nitrate solutions.

3.5. Faradaic efficiency as a function of i in synthetic groundwaters

In Fig. 7, the Faradaic efficiency and EA are plotted as a function of i
for synthetic Bangladesh groundwater (SBGW) and for two synthetic
nitrate contaminated groundwaters (NO3-GW 1 and NO3-GW 2). The
ionic composition and pH of these synthetic groundwaters, which cover
a range of potential source waters for Fe(0) EC treatment, are sum-
marized in Table 2. High Faradaic efficiency in the SBGW solution was
observed for all i, which is consistent with its high chloride con-
centration and low [HCO3

−]/[Cl−] and [NO3
−]/[Cl−] ratios. Coin-

ciding with the high Faradaic efficiency, the EA vs i curve for the SBGW
solution also matched the shape and position of that for the chloride
single anion solution. By contrast, the poor Faradaic efficiency and high
EA for the NO3-GW 1 solution resembled those of the nitrate solution,
which agrees with the [NO3

−]/[Cl−] molar ratio above 30 for this
solution. Despite the 15 fold increase in conductivity for the NO3-GW 1
solution relative to the nitrate solution and the presence of 0.5 mM
chloride, the NO3-GW 1 solution still displayed poor Faradaic effi-
ciency. This result points to the key role of the [NO3

−]/[Cl−] molar
ratio in determining the Faradaic efficiency, rather than the con-
ductivity or absolute chloride concentration.

For the NO3-GW 2 solution, the Faradaic efficiency was greater than
0.9 for i≤ 10 mA/cm2 but dropped abruptly to below 0.1 at
i > 20 mA/cm2. Given the moderate [NO3

−]/[Cl−] ratio of ∼18 mol/
mol for this solution, this result suggests that the [NO3

−]/[Cl−] ratio
dividing the domains of Fe(0) oxidation and O2 evolution also depends
on i. Furthermore, although acidic pH improved the Faradaic efficiency
in sulfate and phosphate solutions (Section 3.3), the results in the NO3-
GW 2 matrix indicate that high i can still promote poor Faradaic effi-
ciency in acidic solutions. The EA vs i curve for the NO3-GW 2 solution
increased sharply at the i-value for which the Faradaic efficiency

decreased, which is similar to the EA vs i curve for sulfate. Despite
having a region of i where Faradaic efficiency was poor, the EA vs i
curve for the NO3-GW 2 solution was positioned ∼0.5 V vs Ag/AgCl
lower than that of the chloride solution. We attribute this difference in
the position of the EA vs i curve for the NO3-GW 2 matrix to its acidic
pH, leading to a lower open circuit potential (−0.6 V vs Ag/AgCl) re-
lative to the single anion solutions (−0.2 V vs Ag/AgCl). This was also
observed in the acidic sulfate and phosphate solutions.

4. Discussion

4.1. Factors affecting the Faradaic efficiency

4.1.1. Ionic composition
For the majority of single anion solutions and synthetic ground-

water matrices, the Faradaic efficiency was largely independent of i.
Rather, the type of anion in the solution played a more critical role in
governing the Faradaic efficiency and EA, and thus the potential for
electrode passivation. For example, regardless of i, Faradaic efficiency
was high in the chloride and bromide solutions, whereas it was minimal
in nitrate and citrate solutions. Modifications of the Fe(0) anode surface
mirrored these trends in Faradaic efficiency, with the chloride and
bromide solutions producing macroscopic surface layers of oxidized Fe
and the nitrate and citrate solutions yielding passivated Fe(0) anode
surfaces that resembled cleaned electrodes (Fig. 4, Figs. S1 and S2).
Although previous EC studies have identified conductivity as a key
operational parameter [7,31,48], our results demonstrate substantial
differences among solutions with identical conductivity, which reveals
the critical importance of the ion composition.

Comparing the Faradaic efficiency and EA measurements as a
function of i for all solutions in Fig. 3 (Section 3.2), it is possible to
rank the anions in the following order of negative influence on Fe
(0) EC performance: chloride ≤ bromide < sulfate < formate <
carbonate ≤ phosphate ≤ citrate ≤ nitrate. With the exception of
nitrate, this sequence of anions generally follows the same order of
increasing stability constants with Fe(II) or Fe(III) (Table S1). For
example, chloride and bromide do not form strong complexes with
Fe(II/III), whereas phosphate and citrate have a high affinity for Fe
(II/III) [49,50]. A similar anion sequence has been observed in
previous studies investigating the reactivity of Fe(0) metal toward
contaminant reduction, which reported that chloride enhanced
electron transfer, whereas the sorption of phosphate and citrate
diminished the redox activity of Fe(0) metal by blocking reactive
sites [32,33]. Therefore, based on this connection between detri-
ment to Faradaic efficiency and the Fe(II/III) stability constants, the
effect of single anions can be explained by the bonding of high af-
finity anions (e.g. phosphate, citrate) to oxidized Fe at the electrode
surface, resulting in a thin, but impermeable passivating film that
prevents the release of Fe(II/III) to solution. Although a molecular-
scale investigation of the surface layers formed on the electrodes
having poor Faradaic efficiency is beyond the scope of our work, the
formation of a nanoscale passivating film is consistent with the
absence of corrosion spots on the anodes used in the citrate ex-
periments and is supported by previous studies reporting the for-
mation of a phosphate-bearing layer that inhibits the corrosion of
Fe and stainless steel in phosphate solutions [51,52].

The exception to the trends in anion sequence is nitrate, which in-
hibited Fe(0) oxidation but does not readily complex with Fe(II/III).
However, the mechanism by which nitrate decreases the Faradaic effi-
ciency is expected to be different than for anions with a high affinity for Fe
(II/III). Rather than complexing with Fe(II/III) at the Fe(0) surface, nitrate
is known to oxidize Fe(0) metal, producing a thin, Fe (oxyhydr)oxide
passive film that inhibits ion diffusion [32]. Despite the different inhibi-
tion mechanisms expected for nitrate and high affinity anions, both me-
chanisms are expected to lead to nanoscale passivating films on the Fe(0)
anode surface, which are imperceptible with SEM [53,54].
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4.1.2. Range of i
For the single anion sulfate and formate solutions and the synthetic

NO3-GW 2 matrix, the i-range influenced the domains of Fe(0) oxida-
tion and O2 evolution. Importantly, the three solutions also displayed
intermediate properties with respect to ionic composition and pH. For
example, the stability constants of sulfate and formate for Fe(II/III) lie
between those of chloride/bromide and phosphate/citrate [50]. In ad-
dition, the [NO3

−]/[Cl−] ratio for the NO3-GW 2 solution (18 mol/
mol) occurs near the threshold ratio (20–30 mol/mol) that separates Fe
(0) oxidation and O2 evolution (Fig. 5). Although i was less important
for end member solutions of the anion sequence described in Section
4.1.1, this parameter played an important secondary role for solutions
with intermediate compositions.

We attribute the impact of i on the anodic reaction and potential for
electrode passivation to the Butler-Volmer relationship, given in Eq.
(2), which shows that an increase in i leads to an increase in EA. Because
an increase in EA can promote anodic reactions with high E0 (Fig. 1a),
an increase in i can lead to the oxidation of H2O or other solutes instead
of Fe(0), which would decrease the Faradaic efficiency. Consistent with
this relationship, we observed a nonlinear jump in EA when the domi-
nant anodic reaction switched from Fe(0) oxidation to O2 evolution
(Fig. 3) for solutions in which the Faradaic efficiency depended on i
(e.g. sulfate). For the sulfate solution, the magnitude of this jump in EA
(≈2 V vs Ag/AgCl) was the exact value separating the EA vs i curves for
Fe(0) oxidation (chloride/bromide) and O2 evolution (citrate/nitrate).
Therefore, we conclude that the measurements of the position of the EA
vs i curve can be a useful and low cost indicator of the anodic reaction
occurring during Fe(0) EC.

4.1.3. Solution pH
For both the sulfate and phosphate solutions, pH influenced the

Faradaic efficiency considerably, with efficient Fe(0) oxidation occur-
ring only at low pH. Considering that phosphate is a detrimental end
member species in the anion sequence (Section 4.1.1), the high Far-
adaic efficiency observed in the phosphate solution at low pH suggests
that pH effects can overcome the negative impact caused by high affi-
nity anions, particularly at low i. The pH dependence of the Faradaic

efficiency observed in our study can be explained by a number of
contemporaneous processes. First, as pH increases, E0 for the H2O/O2

redox couple decreases [50], leading to a narrower field of H2O stability
and increased likelihood of O2 evolution for a given EA. Second, in-
creasing pH leads to orders of magnitude faster rates for Fe(II) oxidation
by O2 [55] as well as decreased Fe(III) solubility (see Supplementary
material for speciation calculations and Fig. S5 for Fe(III) saturation
indices). Both of these processes, which are applicable in all solutions
regardless of ion composition, are expected to promote the formation of
Fe(III) (oxyhydr)oxide passivating films that inhibit electron transfer
across the anode and Fe(II/III) release. Finally, for the phosphate
electrolyte, the solubility of Fe(II) in the presence of phosphate depends
strongly on pH. For example, as pH increases from 4 to 7, the saturation
index of vivianite (Fe3(PO4)2·8H2O) increases ∼10 orders of magnitude
(−2.9 to 7.4, Fig. S6), leading to conditions that favor the formation of
anodic surface layers that inhibit Fe(II) release. These pH dependent
changes in solid phase solubility in the phosphate solution, which do
not occur to the same extent in the sulfate solution (Fig. S6), explain the
stronger impact of pH in the presence of phosphate relative to sulfate
(Fig. 6).

4.2. Implications for EC treatment in the field

4.2.1. Field treatment recommendations
Effective treatment of contaminated waters by Fe(0) EC relies on the

production and transport of Fe(II) from the Fe(0) anode surface to the
bulk solution. For example, Cr(VI) is removed in EC systems by reaction
with EC generated Fe(II), to form insoluble Cr(III) [6,7], whereas As(III)
is removed by oxidation to As(V) by Fenton type intermediates and
sorption to EC generated Fe(III) precipitates [35,56]. Therefore, re-
gardless of the contaminant removal mechanism, a critical loss of
treatment efficiency occurs when the applied current drives O2 evolu-
tion at the expense of Fe(0) oxidation. In addition, as shown in this
work, a drop in Faradaic efficiency is accompanied by a spike in EA,
which is consistent with electrode passivation. This increases the total
EC cell voltage and can result in higher power consumption during EC
treatment. Therefore, EC system effectiveness in the field relies on

Fig. 5. Influence of solution pH on the Faradaic efficiency
and anodic interface potential from Fe(0) EC experiments
performed at current densities of 1 (empty circles) and 3 mA/
cm2 (filled circles) in 5 mM sulfate (A and B) and 5 mM
phosphate (C and D) solutions. Error bars indicate the max-
imum drift in pH observed during experiments. The open
circuit potential of the low pH samples for both solutions was
−0.6 to −0.4 V vs Ag/AgCl, whereas at circumneutral pH
and above, the open circuit potential was −0.2 to −0.1 V vs
Ag/AgCl.
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avoiding poor Faradaic efficiency.
Based on our results, the i-range can impact the Faradaic efficiency

for specific solution compositions, with efficient Fe(0) oxidation fa-
vored at i < 5 mA/cm2, which is similar to the i-range used in previous
Fe(0) EC field experiments [3]. However, although i should not be ig-
nored in field treatment, our results indicate that the solution compo-
sition is the dominant parameter governing the Faradaic efficiency.
Source waters with low chloride levels, alkaline pH and high con-
centrations of nitrate, carbonate and other high affinity oxyanions can
be a barrier to high Faradaic efficiency. Treatment influents with such
solution chemistry can be encountered in nitrate contaminated
groundwater systems, including those impacted by agricultural runoff
[57], sewage [58], and radionuclide enrichment activities [37,42,44].
Furthermore, chloride concentrations in groundwaters contaminated by
geogenic arsenic can be low and [HCO3

−]/[Cl−] ratios above the cri-
tical ratio of 100 mol/mol (Fig. 6) are not uncommon in regions tar-
geted for Fe(0) EC treatment in South Asia (e.g. Table 7.1 in the British
Geologic Survey analysis of Bangladeshi groundwater [39]).

Although decreasing pH to near 4 can negate some of the impacts of
ion composition, adjusting pH at field treatment scale is impractical for
several reasons, e.g. hazardous and costly chemicals, pH readjustment
of treatment effluent, skilled labor requirement. Instead, our results
indicate that an influent composition favoring O2 evolution can be
overcome easily and at low cost by simple additions of small quantities
of NaCl (table salt) prior to electrolysis. Although the importance of
halide ions to Fe(0) EC performance has been suggested previously
[25,31,48], our results have uncovered distinct [NO3

−]/[Cl−] and
[HCO3

−]/[Cl−] molar ratios that separate the Fe(0) oxidation and O2

evolution domains (Fig. 6). Based on this ratio, the addition of 1 mM
NaCl can overcome nitrate and carbonate concentrations up to 20 and

Fig. 6. Influence of the (A) [NO3
−]/[Cl−] and (B) [HCO3

−]/
[Cl−] molar ratios on the Faradaic efficiency and EA for Fe(0)
EC experiments performed at i= 1 mA/cm2. Filled symbols
represent Faradaic efficiency; empty symbols indicate EA.

Fig. 7. Faradaic efficiency (A) and anodic interface potential (B) as a function of i for
three synthetic groundwaters (composition presented in Table 2).
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100 mM, respectively. This result suggests that a single purchase of
10 kg NaCl can provide enough chloride to treat over 150 m3 of
groundwater containing moderate to high nitrate or carbonate levels.
Previous analyses of fully operational Fe(0) EC systems (10,000 L/d
capacity) have estimated total costs to be<$1.50/m3 of treated water
[3], which includes consumable costs ($0.44/m3, iron plates, elec-
tricity, additional chemicals) and system fabrication and labor costs
($1.04/m3), but excludes sludge disposal (estimated<5% of total
costs). Therefore, assuming a conservative price of table salt ($10/
10 kg), the proposed addition of small quantities of NaCl to ensure high
Faradaic efficiency would increase these estimated costs< 5%. Al-
though this option adds a pretreatment step, it is very simple and does
not require hazardous chemicals or major supply chain infrastructure
and would render the electrolyte solution suitable for a wide range of i.
In addition, our results indicate that measurement of EA, which does not
require expensive equipment, and comparison of this value with i can
inform system operators when NaCl treatment is required.

4.2.2. Insights into field treatment performance over time
Several previous Fe(0) EC field studies have reported a drop in

system performance over extended operating times (weeks to months)
and cycles of electrode polarization, i.e. periods of operation (wet) and
storage (dry) [45,59]. One previously proposed explanation for this
decreased field performance is a drop in Faradaic efficiency resulting
from O2 evolution after many cycles of operation. However, extended
EC field trials typically contain few systematic measurements of key
parameters over time, i.e. no regular measurements of EA or Fe in
suspension [3]. As a consequence, explanations of the efficiency drop
observed during field treatment remain speculative.

We observed a subtle decrease in the Faradaic efficiency on single
run time scales (Fig. 2), which was reproduced in both the sulfate and
chloride solutions. Over the 10 runs required to produce anode samples
for SEM imaging, a decrease in the Faradaic efficiency was also ob-
served (Fig. S7). These drops in Faradaic efficiency over a single run
(Fig. 2) or multiple runs (Fig. S7) did not coincide with an offset in EA
indicative of O2 evolution (or Fe(III) production). Although Fe(0) EC
field systems differ in size and treatment time relative to our experi-
mental setup [1,3,59], the absence of an increase in EA over several
days (10 runs) in this work suggests that O2 evolution after extended
treatment cycles in the field is not the primary cause of decreased
system performance. This conclusion is consistent with the relatively
low i (∼1 mA/cm2) used in previous Fe(0) EC field trials [3]. Rather, in
light of the build up of anodic surface layers in the chloride/bromide
solution (Fig. 4, Figs. S1 and S2), our results support the hypothesis that
field treatment performance decreases over time because EC generated
Fe(II) is trapped at the anode by macroscopic Fe (oxyhydr)oxide surface
layers (e.g. magnetite, goethite) formed on the electrode after extended
operation [45].

5. Conclusions

The ionic composition and pH of the electrolyte solution largely
determined the Faradaic efficiency of Fe(0) EC, with changes in i
influencing the domains of Fe(II) production and O2 evolution only
in certain electrolyte solutions (e.g. sulfate and formate). By
ranking single anion solutions according to their detriment to
Faradaic efficiency (chloride ≤ bromide < sulfate < formate <
carbonate ≤ phosphate ≤ citrate ≤ nitrate), we elucidated a useful
relationship between the propensity of ions to form strong com-
plexes with Fe(II,III) and low Faradaic efficiency. The exception to
this trend is nitrate, which is expected to interact with the Fe(0)
anode differently [32]. Based on this relationship, we expect that
solutions containing ions with strong affinity for Fe(II/III), such as
silicate, would favor O2 evolution, whereas solutions containing
ions such as iodide and fluoride, which have a weaker affinity for Fe
(II,III) [50], promote Fe(0) oxidation. In chloride containing,

binary anion solutions, we found the domains of Fe(0) oxidation
and O2 evolution (i = 1 mA/cm2) were separated by discreet
[NO3

−]/[Cl−] and [HCO3
−]/[Cl−] molar ratios, which were con-

firmed in synthetic groundwater solutions. This result indicates that
a simple amendment of NaCl to source waters with compositions
that favor O2 evolution (e.g. sites of nitrate pollution or arsenic
contaminated groundwater with low chloride content) can ensure
high Faradaic efficiency, which is critical to optimize the perfor-
mance of Fe(0) EC systems in the field.

The EA vs i curves for the chloride and bromide solutions overlapped
and reached EA far greater than the E0 of H2O/O2, Cl−/Cl2 and Br−/Br2
couples, but high Faradaic efficiency was still observed in these solu-
tions. This conclusion demonstrates that significant anodic Cl2 and Br2
formation is unlikely to occur during Fe(0) EC even at extreme EA (and
i), although their formation has been reported for different electrode
materials (e.g. boron-doped diamond or Al(0) electrodes) [60,61]. Fi-
nally, the EA vs i curves for the citrate and nitrate solutions, which
exhibited poor Faradaic efficiency, also overlapped and were situated
2–4 V vs Ag/AgCl above that of the chloride/bromide solutions. Com-
parison between the EA vs i curves of both high and low Faradaic ef-
ficiency solutions showed that the EA vs i curve, rather than the EA
alone, is necessary to identify the primary reaction occurring on the Fe
(0) anode. This information can be used to accurately determine in real
time if Fe(0) EC systems are operating at high Faradaic efficiency using
only simple, low cost, and chemical-free field measurements of EA with
knowledge of i.
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