996 research outputs found

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    NIHAO project II: Halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations

    Get PDF
    We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects) cosmological simulations to study the effects of galaxy formation on key properties of dark matter (DM) haloes. NIHAO consists of 90\simeq 90 high-resolution SPH simulations that include (metal-line) cooling, star formation, and feedback from massive stars and SuperNovae, and cover a wide stellar and halo mass range: 106<M/M<101110^6 < M_* / M_{\odot} < 10^{11} ( 109.5<Mhalo/M<1012.510^{9.5} < M_{\rm halo} / M_{\odot} < 10^{12.5}). When compared to DM-only simulations, the NIHAO haloes have similar shapes at the virial radius, R_{\rm vir}, but are substantially rounder inside 0.1Rvir\simeq 0.1R_{\rm vir}. In NIHAO simulations c/ac/a increases with halo mass and integrated star formation efficiency, reaching 0.8\sim 0.8 at the Milky Way mass (compared to 0.5 in DM-only), providing a plausible solution to the long-standing conflict between observations and DM-only simulations. The radial profile of the phase-space QQ parameter (ρ/σ3\rho/\sigma^3) is best fit with a single power law in DM-only simulations, but shows a flattening within 0.1Rvir\simeq 0.1R_{\rm vir} for NIHAO for total masses M>1011MM>10^{11} M_{\odot}. Finally, the global velocity distribution of DM is similar in both DM-only and NIHAO simulations, but in the solar neighborhood, NIHAO galaxies deviate substantially from Maxwellian. The distribution is more symmetric, roughly Gaussian, with a peak that shifts to higher velocities for Milky Way mass haloes. We provide the distribution parameters which can be used for predictions for direct DM detection experiments. Our results underline the ability of the galaxy formation processes to modify the properties of dark matter haloes.Comment: 19 pages, 17 figures, analysis strongly improved, main conclusions unchanged, accepted for publication in MNRA

    Implementing Shor's algorithm on Josephson Charge Qubits

    Full text link
    We investigate the physical implementation of Shor's factorization algorithm on a Josephson charge qubit register. While we pursue a universal method to factor a composite integer of any size, the scheme is demonstrated for the number 21. We consider both the physical and algorithmic requirements for an optimal implementation when only a small number of qubits is available. These aspects of quantum computation are usually the topics of separate research communities; we present a unifying discussion of both of these fundamental features bridging Shor's algorithm to its physical realization using Josephson junction qubits. In order to meet the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through numerical optimization.Comment: 12 pages, submitted to Phys. Rev.

    NIHAO IV: Core creation and destruction in dark matter density profiles across cosmic time

    Full text link
    We use the NIHAO simulations to investigate the effects of baryonic physics on the time evolution of Dark Matter central density profiles. The sample is made of 70\approx 70 independent high resolution hydrodynamical simulations of galaxy formation and covers a wide mass range: 1e10< Mhalo <1e12, i.e., from dwarfs to L* . We confirm previous results on the dependence of the inner dark matter density slope, α\alpha, on the ratio between stellar-to-halo mass. We show that this relation holds approximately at all redshifts (with an intrinsic scatter of ~0.18 in α\alpha). This implies that in practically all haloes the shape of their inner density profile changes quite substantially over cosmic time, as they grow in stellar and total mass. Thus, depending on their final stellar-to-halo mass ratio, haloes can either form and keep a substantial density core (size~1 kpc), or form and then destroy the core and re-contract the halo, going back to a cuspy profile, which is even steeper than CDM predictions for massive galaxies (~1e12 Msun). We show that results from the NIHAO suite are in good agreement with recent observational measurements of α\alpha in dwarf galaxies. Overall our results suggest that the notion of a universal density profile for dark matter haloes is no longer valid in the presence of galaxy formation.Comment: 11 pages, 13 figures. Corrected typo in table 2 (middle row) with respect to the version published in MNRA

    Evolution of interfaces and expansion in width

    Full text link
    Interfaces in a model with a single, real nonconserved order parameter and purely dissipative evolution equation are considered. We show that a systematic perturbative approach, called the expansion in width and developed for curved domain walls, can be generalized to the interfaces. Procedure for calculating curvature corrections is described. We also derive formulas for local velocity and local surface tension of the interface. As an example, evolution of spherical interfaces is discussed, including an estimate of critical size of small droplets.Comment: Discussion of stability of the interface is added, and the numerical estimates of width and velocity of the interface in the liquid crystal example are corrected. 25 pages, Latex2

    Developing a Model for Evidence-based Clinical Forensic Interviewing

    Get PDF
    Much of the work undertaken in forensic settings, such as diagnosis, formulation and judgements about treatment and placement are based on information gathered through clinical forensic interviewing. Despite this, the evidence base on which clinical forensic interviewing is founded is extremely limited. This paper is divided into two sections; the first examines the nature of interviewing and provides an introduction to this area of practice. Drawing on some of the research undertaken with specific forms of interview such as those for diagnosis and investigative purposes allows factors such as the evidence concerning interview quality, interview effectiveness, underlying competencies and methods for skills training to be outlined. The second part of the paper, which provides the main focus, describes a forensic clinical interview framework which seeks to draw together a broad range of considerations and areas for research in relation to the clinical forensic interview. This framework is explicitly intended to provoke and guide practitioners and researchers in the pursuit of evidence-based interviewing

    Dynamics of Weak First Order Phase Transitions

    Get PDF
    The dynamics of weak vs. strong first order phase transitions is investigated numerically for 2+1 dimensional scalar field models. It is argued that the change from a weak to a strong transition is itself a (second order) phase transition, with the order parameter being the equilibrium fractional population difference between the two phases at the critical temperature, and the control parameter being the coefficient of the cubic coupling in the free-energy density. The critical point is identified, and a power law controlling the relaxation dynamics at this point is obtained. Possible applications are briefly discussed.Comment: 11 pages, 4 figures in uuencoded compressed file (see instructions in main text), RevTeX, DART-HEP-94/0

    Is there Evidence for Flat Cores in the Halos of Dwarf Galaxies?: The Case of NGC 3109 and NGC 6822

    Full text link
    Two well studied dwarf galaxies -- NGC 3109 and NGC 6822 -- present some of the strongest observational support for a flat core at the center of galactic dark matter (DM) halos. We use detailed cosmologically motivated numerical models to investigate the systematics and the accuracy of recovering parameters of the galaxies. Some of our models match the observed structure of the two galaxies remarkably well. Our analysis shows that the rotation curves of these two galaxies are instead quite compatible with their DM halos having steep cuspy density profiles. The rotation curves in our models are measured using standard observational techniques. The models reproduce the rotation curves of both galaxies, the disk surface brightness profiles as well as the profile of isophotal ellipticity and position angle. The models are centrally dominated by baryons; however, the dark matter component is globally dominant. The simulated disk mass is marginally consistent with a stellar mass-to-light ratio in agreement with the observed colors. We show that non-circular motions combined with gas pressure support and projection effects results in a large underestimation of the circular velocity in the central 1\sim 1 kpc region, creating the illusion of a constant density core. Although the systematic effects mentioned above are stronger in barred systems, they are also present in axisymetric disks. Our results strongly suggest that there is no contradiction between the observed rotation curves in dwarf galaxies and the cuspy central dark matter density profiles predicted by Cold Dark Matter models.Comment: Accepted for publication in the ApJ. New discussion, figures and one appendix. High resolution version at:http://www.astro.washington.edu/octavio/N3109_paper.ps.g

    Thermal Phase Mixing During First Order Phase Transitions

    Full text link
    The dynamics of first order phase transitions are studied in the context of (3+1)-dimensional scalar field theories. Particular attention is paid to the question of quantifying the strength of the transition, and how `weak' and `strong' transitions have different dynamics. We propose a model with two available low temperature phases separated by an energy barrier so that one of them becomes metastable below the critical temperature TcT_c. The system is initially prepared in this phase and is coupled to a thermal bath. Investigating the system at its critical temperature, we find that `strong' transitions are characterized by the system remaining localized within its initial phase, while `weak' transitions are characterized by considerable phase mixing. Always at TcT_c, we argue that the two regimes are themselves separated by a (second order) phase transition, with an order parameter given by the fractional population difference between the two phases and a control parameter given by the strength of the scalar field's quartic self-coupling constant. We obtain a Ginzburg-like criterion to distinguish between `weak' and `strong' transitions, in agreement with previous results in (2+1)-dimensions.Comment: 28 pages RevTeX, 9 postscript figures, IMPERIAL/TP/93-94/58, DART-HEP-94/0
    corecore