71 research outputs found

    Interference of Quantum Channels

    Full text link
    We show how interferometry can be used to characterise certain aspects of general quantum processes, in particular, the coherence of completely positive maps. We derive a measure of coherent fidelity, maximum interference visibility and the closest unitary operator to a given physical process under this measure.Comment: 4 pages, 5 figures, REVTeX 4, typographical corrections and added acknowledgemen

    Physical realizations of quantum operations

    Full text link
    Quantum operations (QO) describe any state change allowed in quantum mechanics, such as the evolution of an open system or the state change due to a measurement. We address the problem of which unitary transformations and which observables can be used to achieve a QO with generally different input and output Hilbert spaces. We classify all unitary extensions of a QO, and give explicit realizations in terms of free-evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations, on the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a majorization relation which selects the allowed unitary interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.

    The entanglement of purification

    Get PDF
    We introduce a measure of both quantum as well as classical correlations in a quantum state, the entanglement of purification. We show that the (regularized) entanglement of purification is equal to the entanglement cost of creating a state ρ\rho asymptotically from maximally entangled states, with negligible communication. We prove that the classical mutual information and the quantum mutual information divided by two are lower bounds for the regularized entanglement of purification. We present numerical results of the entanglement of purification for Werner states in H2H2{\cal H}_2 \otimes {\cal H}_2.Comment: 12 pages RevTex, 1 figure, to appear in JMP special issue on quantum information. v3 contains additional references, motivation, and a small change in the figur

    Measuring processes and the Heisenberg picture

    Full text link
    In this paper, we attempt to establish quantum measurement theory in the Heisenberg picture. First, we review foundations of quantum measurement theory, that is usually based on the Schr\"{o}dinger picture. The concept of instrument is introduced there. Next, we define the concept of system of measurement correlations and that of measuring process. The former is the exact counterpart of instrument in the (generalized) Heisenberg picture. In quantum mechanical systems, we then show a one-to-one correspondence between systems of measurement correlations and measuring processes up to complete equivalence. This is nothing but a unitary dilation theorem of systems of measurement correlations. Furthermore, from the viewpoint of the statistical approach to quantum measurement theory, we focus on the extendability of instruments to systems of measurement correlations. It is shown that all completely positive (CP) instruments are extended into systems of measurement correlations. Lastly, we study the approximate realizability of CP instruments by measuring processes within arbitrarily given error limits.Comment: v

    Relations for certain symmetric norms and anti-norms before and after partial trace

    Full text link
    Changes of some unitarily invariant norms and anti-norms under the operation of partial trace are examined. The norms considered form a two-parametric family, including both the Ky Fan and Schatten norms as particular cases. The obtained results concern operators acting on the tensor product of two finite-dimensional Hilbert spaces. For any such operator, we obtain upper bounds on norms of its partial trace in terms of the corresponding dimensionality and norms of this operator. Similar inequalities, but in the opposite direction, are obtained for certain anti-norms of positive matrices. Through the Stinespring representation, the results are put in the context of trace-preserving completely positive maps. We also derive inequalities between the unified entropies of a composite quantum system and one of its subsystems, where traced-out dimensionality is involved as well.Comment: 11 pages, no figures. A typo error in Eq. (5.15) is corrected. Minor improvements. J. Stat. Phys. (in press

    Electron Cooling Experiments in CSR

    Get PDF
    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.Comment: 5 pages 11 figure

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    Mapping Meisner – how Stanislavski’s system influenced Meisner’s process and why it matters to British Drama School training today

    Get PDF
    As the Meisner technique has increased in popularity in UK Drama schools over the last decade, it is important to understand its origin and where Meisner drew his own inspiration from during the development of his technique, especially when questioning its place within British conservatoire training. This article will give a brief outline of Meisner’s foundational training, such as the Repetition and Activity exercises, however the main purpose is to highlight the ideas behind the technique. This will include the training Meisner received within the Group Theatre, the inspiration he took from the Russian scholars and the areas of Stanislavsky’s system that were utilised as he developed his technique. The article also acknowledges the argument that the Meisner technique’s introduction outside the US has been subject to aform of misrepresentation as large parts of Meisner’s more analytical training have often not been adequately represented, and in some cases ignored entirely
    corecore