41 research outputs found

    On DP-Coloring of Digraphs

    Get PDF
    DP-coloring is a relatively new coloring concept by Dvo\v{r}\'ak and Postle and was introduced as an extension of list-colorings of (undirected) graphs. It transforms the problem of finding a list-coloring of a given graph GG with a list-assignment LL to finding an independent transversal in an auxiliary graph with vertex set {(v,c) ∣ v∈V(G),c∈L(v)}\{(v,c) ~|~ v \in V(G), c \in L(v)\}. In this paper, we extend the definition of DP-colorings to digraphs using the approach from Neumann-Lara where a coloring of a digraph is a coloring of the vertices such that the digraph does not contain any monochromatic directed cycle. Furthermore, we prove a Brooks' type theorem regarding the DP-chromatic number, which extends various results on the (list-)chromatic number of digraphs.Comment: 23 pages, 6 figure

    On a special case of Hadwiger's conjecture

    Get PDF
    Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α (G) = 2. We present some results in this special case

    Ordered and linked chordal graphs

    Get PDF
    A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order. In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered. We prove the following results for a chordal graph G: (a) G is (2k-3)-connected if and only if it is k-vertex-edge-ordered (k ≥ 3). (b) G is (2k-1)-connected if and only if it is strongly k-vertex-edge-ordered (k ≥ 2). (c) G is k-linked if and only if it is (2k-1)-connected
    corecore