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Abstract

DP‐coloring is a relatively new coloring concept by Dvořák
and Postle and was introduced as an extension of list‐
colorings of (undirected) graphs. It transforms the problem

of finding a list‐coloring of a given graph G with a list‐
assignment L to finding an independent transversal in an

auxiliary graph with vertex set ∈ ∈v c v V G c{( , )| ( ), L v( )}.

In this paper, we extend the definition of DP‐colorings to

digraphs using the approach from Neumann‐Lara where a

coloring of a digraph is a coloring of the vertices such that

the digraph does not contain any monochromatic directed

cycle. Furthermore, we prove a Brooks’ type theorem

regarding the DP‐chromatic number, which extends various

results on the (list‐)chromatic number of digraphs.
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J E L C LA S S I F I C A T I ON

05C20

1 | INTRODUCTION

Recall that the chromatic number χ G( ) of an undirected graph G is the least integer k for which
there is a coloring of the vertices of G with k colors such that each color class induces an edgeless
subgraph ofG. The chromatic number χ D( ) of a digraph D, as defined in [15] by Neumann‐Lara, is
the smallest integer k for which there is a coloring of the vertices of D with k colors such that each
color class induces an acyclic subdigraph of D, that is, a subdigraph that does not contain any
directed cycle. This definition is especially reasonable because it implies that the chromatic number
of a bidirected graph and the chromatic number of its underlying (undirected) graph coincide.
Furthermore, it shows that various results concerning the chromatic number of undirected graphs
can be extended to digraphs. For example, the analogue to Brooks’ famous theorem [5] that the
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chromatic number of a graph is always at most its maximum degree plus 1 and that the only
connected graphs for which equality hold are the complete graphs and the odd cycles was proven
by Mohar [14]. As usual, a digraph D is k‐critical if χ D k( ) = but ≤χ D k( ′) − 1 for every proper
subdigraph D′ of D. Mohar [14] proved the following:

Theorem 1 (Mohar [14]). Suppose that D is a k‐critical digraph in which each vertex v

satisfies d v d v k( ) = ( ) = − 1D D
+ − . Then, one of the following cases occurs:

(a) k = 2 and D is a directed cycle of length ≥2.
(b) k = 3 and D is a bidirected cycle of odd length ≥3.
(c) D is a bidirected complete graph.

Moreover, some results regarding the list‐chromatic number can also be transferred to
digraphs. Given a digraph D, some color set C, and a function →L V D: ( ) 2C (a so‐called list‐
assignment), an L‐coloring of D is a function →φ V D C: ( ) such that ∈φ v L v( ) ( ) for all
∈v V D( ) and D φ c[ ({ })]−1 contains no directed cycle for each ∈c C (if such a coloring exists,

we say that D is L‐colorable). Harutyunyan and Mohar [11] proved the following, thereby
extending a theorem of Erdős et al [8] for undirected graphs. Recall that a block of a digraph is a
maximal connected subdigraph that does not contain a separating vertex.

Theorem 2. Let D be a connected digraph, and let L be a list‐assignment such that
≥L v d v d v| ( )| max{ ( ), ( )}D D

+ − for all ∈v V D( ). Suppose that D is not L‐colorable. Then, D is
Eulerian and for every block B of D one of the following cases occurs:

(a) B is a directed cycle of length ≥2.
(b) B is a bidirected cycle of odd length ≥3.
(c) B is a bidirected complete graph.

It is a natural question to wonder if the requirement ≥L v d v d v| ( )| min{ ( ), ( )}D D
+ − for all

∈v V D( ) is already sufficient for implying the above statement. That this is not the case was
shown by Harutyunyan and Mohar [11]. More precisely, they proved that it is even NP‐
complete to decide whether a planar digraph satisfying this condition is L‐colorable, or not.

Recently, Dvořák and Postle [6] introduced a new coloring concept, the so‐called DP‐colorings
(they call it correspondence colorings). DP‐colorings are an extension of list‐colorings, which is
based on the fact that the problem of finding an L‐coloring of a graphG can be transformed to that
of finding an appropriate independent set in an auxiliary graph with vertex set

∈ ∈v c v V G c L v{( , )| ( ), ( )}. In Section 3, we extend the concept of DP‐coloring from graphs to
digraphs. In particular, we introduce the DP‐chromatic number of a digraph and show that the
DP‐chromatic number of a bidirected graph is equal to the DP‐chromatic number of its underlying
graph (see Corollary 4). As the main result of our paper, we provide a characterization of DP‐degree
colorable digraphs (see Theorems 7 and 15) that generalizes Theorem 2.

2 | BASIC TERMINOLOGY

For an extensive depiction of digraph terminology, we refer the reader to [1]. Given a digraph
D, we denote the set of vertices of D by V D( ) and the set of arcs of D by A D( ). The number of
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vertices of D is called the order of G and is denoted by D| |. Digraphs in this paper may have
neither loops nor parallel arcs; however, it is allowed that there are two arcs going in opposite
directions between two vertices (in this case we say that the arcs are opposite). We denote by uv
the arc whose initial vertex is u and whose terminal vertex is v; u and v are also said to be the
end‐vertices of the arc uv. Let ⊆X Y V D, ( ), then A X Y( , )D denotes the set of arcs that have
their initial vertex in X and their terminal vertex in Y . Two vertices u v, are adjacent if at least
one of uv and vu belongs to A D( ). If u and v are adjacent, we also say that u is a neighbor of v
and vice versa. If ∈uv A D( ), then we say that v is an out‐neighbor of u and u is an in‐neighbor of
v. By N v( )D

+ we denote the set of out‐neighbors of v; by N v( )D
− the set of in‐neighbors of v. Given

a digraph D and a vertex set X , by D X[ ] we denote the subdigraph of D that is induced by the
vertex set X , that is, V D X X( [ ]) = and A D X A X X( [ ]) = ( , )D . A digraph D′ is said to be an
induced subdigraph of D if D D V D′ = [ ( ′)]. As usual, if X is a subset of V D( ), we define
D X D V D X− = [ ( )\ ]. If X v= { } is a singleton, we use D v− rather than D v− { }. The out‐
degree of a vertex ∈v V D( ) is the number of arcs whose initial vertex is v; we denote it by d v( )D

+ .
Similarly, the number of arcs whose terminal vertex is v is called the in‐degree of v and is
denoted by d v( )D

− . Note that d v N v( ) = | ( )|D D
+ + and d v N v( ) = | ( )|D D

− − for all ∈v V D( ). A vertex
∈v V D( ) is Eulerian if d v d v( ) = ( )D D

+ − . Moreover, the digraph D is Eulerian if every vertex of D
is Eulerian. By DΔ ( )+ (respectively DΔ ( )− ) we denote the maximum out‐degree (respectively
maximum in‐degree) of D. A matching in D is a setM of arcs of D with no common end‐vertices.
A matching in D is perfect if it contains D| |

2
arcs.

Given a digraph D, its underlying graph G D( ) is the simple undirected graph with
V G D V D( ( )) = ( ) and ∈u v E G D{ , } ( ( )) if and only if at least one of uv and vu belongs to A D( ).
The digraph D is (weakly) connected if G D( ) is connected. A separating vertex of a connected
digraph D is a vertex ∈v V D( ) such that D v− is not connected. Furthermore, a block of D is a
maximal subdigraph D′ of D such that D′ has no separating vertex. By D( ) we denote the set of
all blocks of D.

A directed path is a digraph P such thatV P v v v( ) = { , , …, }p1 2 and A P( ) = v v v v v v{ , , …, },p p1 2 2 3 −1

where the vi are all distinct and ≥p 1. Furthermore, a directed cycle of length ≥p 2 is a digraph C
with V C v v v( ) = { , , …, }p1 2 and A C v v v v v v v v( ) = { , , …, , }p p p1 2 2 3 −1 1 where the vi are all distinct. A
directed cycle of length 2 is called a digon. If D is a digraph and ifC is a cycle in the underlying graph
G D( ), we denote by DC the maximal subdigraph of D satisfyingG D C( ) =C . A bidirected graph is a
digraph that can be obtained from an undirected (simple) graph G by replacing each edge by two
opposite arcs, we denote it by D G( ). A bidirected complete graph is also called a complete digraph.

3 | DP ‐COLORINGS OF DIGRAPHS

3.1 | The DP‐chromatic number

Let D be a digraph. A cover of D is a pair X H( , ) satisfying the following conditions:

(C1) H is a digraph and →X V D: ( ) 2V H( ) is a function that assigns to each vertex ∈v V D( ) a
vertex set ⊆X X v V H= ( ) ( )v such that the sets Xv with ∈v V D( ) are pairwise disjoint.

(C2) We have ⋃ ∈V H X( ) = v V D v( ) and each Xv is an independent set of H . For each arc
∈a uv A D= ( ), the arcs from A X X( , )H u v form a possibly empty matching Ma in
∪H X X[ ]u v . Furthermore, the arcs of H are ⋃ ∈A H M( ) = a A D a( ) .

78 | BANG‐JENSEN ET AL.



Now let X H( , ) be a cover of D. A vertex set ⊆T V H( ) is a transversal of X H( , ) if
∩T X| | = 1v for each vertex ∈v V D( ). An acyclic transversal of X H( , ) is a transversal T of

X H( , ) such that H T[ ] contains no directed cycle. An acyclic transversal of X H( , ) is also called
an X H( , )‐coloring of D; the vertices of H are called colors. We say that D is X H( , )‐colorable if D
admits an X H( , )‐coloring. Let → f V D: ( ) 0 be a function. Then, D is said to be DP‐ f ‐
colorable if D is X H( , )‐colorable for every cover X H( , ) of D satisfying ≥X f v| | ( )v for all
∈v V D( ) (we will call such a cover an f ‐cover). If D is DP‐ f ‐colorable for a function f such

that f v k( ) = for all ∈v V D( ), then we say that D is DP‐k‐colorable. The DP‐chromatic number
χ D( )DP is the smallest integer ≥k 0 such that D is DP‐k‐colorable.

DP‐coloring was originally introduced for undirected graphs by Dvořák and Postle [6] and,
independently, by Fraigniaud et al [9]; they call it conflict coloring. Let G be an undirected
(simple) graph. A cover of G is a pair X H( , ) satisfying (C1) and (C2) where the matching Me

associated to an edge ∈e uv E G= ( ) is an undirected matching between Xu and Xv (and H is
therefore an undirected graph). An X H( , )‐coloring of G is an independent transversal T of
X H( , ), that is, T is a transversal of X H( , ) such that H T[ ] is edgeless. The definitions of DP‐ f ‐
colorable, DP‐k‐colorable and the DP‐chromatic number are analogous.

We now investigate the relation between undirected and directed DP‐colorings.

Theorem 3. A bidirected graph D is DP‐ f ‐colorable if and only if its underlying
undirected graph G D( ) is DP‐ f ‐colorable.

Proof. We prove the two implications separately. First, assume that D is DP‐ f ‐colorable.
To show that G G D= ( ) is DP‐ f ‐colorable, let X H( , )G be an f ‐cover of G and let
H D H= ( )D G be the bidirected graph associated to HG. Then, X H( , )D is an f ‐cover of D.
By assumption, there is an acyclic transversal T of X H( , )D . As HD is bidirected, T is an
independent transversal of X H( , )G and so G is DP‐ f ‐colorable.

The converse is less obvious since even if D is bidirected, its covers do not have to be
bidirected. Let X H( , )D be a cover of a bidirected graph D. We say that the cover is
symmetric if and only if for every pair of opposite arcs uv and vu in D, the matchings Muv

and Mvu are opposite, that is, each arc in Mvu is opposite to some arc in Muv. We say that
the cover is locally symmetric around a given vertex ∈v V D( ) if Muv and Mvu are opposite
for every vertex u adjacent to v.

Let f be such that D is not DP‐ f ‐colorable. We claim that G G D= ( ) is not DP‐ f ‐
colorable. To prove this, we choose an f ‐cover X H( , )D of D for which D is not X H( , )D ‐
colorable such that X H( , )D is locally symmetric around a maximum number of vertices.
Suppose that there exists a vertex ∈v V D( ) around which X H( , )D is not locally
symmetric. Let X H( , )′D be the f ‐cover of D obtained from X H( , )D by replacing Muv by the
opposite of Mvu for every vertex u adjacent to v (note that this will not affect vertices that
are already locally symmetric). By the the choice of X H( , )D , there exists an acyclic
transversal T of X H( , )′D . Then, T is also a transversal of X H( , )D , and, since D is not
X H( , )D ‐colorable, H T[ ]D contains a directed cycle C.
As H X−D v is isomorphic to H X−′D v, it follows from the choice of T that C must

contain a vertex ∈x Xv. Hence, there exists a vertex u adjacent to v in D and a vertex
∈x X′ u such that ∈xx M′ vu and ∈x T′ . Since the graph H′D contains both the arcs xx′

and x x′ , H x x[{ , ′}]′D is a digon and, hence, H T[ ]′D also contains a directed cycle. Thus,
X H( , )′D is an f ‐cover of D for which D is not X H( , )′D ‐colorable, but X H( , )′D is locally
symmetric around strictly more vertices than X H( , )D , contradicting the choice of X H( , )D .
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Consequently, X H( , )D is symmetric and, as a consequence, for H G H= ( )G D , the pair
X H( , )G is an f ‐cover of the underlying graph G G D= ( ) such that G is not X H( , )G ‐
colorable, which implies that G is not DP‐ f ‐colorable. □

An important property of the chromatic number of a digraph is that the chromatic number
of a bidirected graph coincides with the chromatic number of its underlying graph. Theorem 3
implies that this property also holds for DP‐coloring.

Corollary 4. The DP‐chromatic number of a bidirected graph is equal to the DP‐
chromatic number of its underlying graph.

DP‐colorings are of special interest because they constitute a generalization of list‐colorings:
let D be a digraph, let C be a color set, and let →L V D: ( ) 2C be a list‐assignment. We define a
cover X H( , ) of D as follows: let X v L v= { } × ( )v for all ∈v V D( ), ⋃ ∈V H X( ) = v V D v( ) , and

∈A H v c v c vv A D c c( ) = {( , )( ′, ′)| ′ ( ) and = ′}. It is obvious that X H( , ) indeed is a cover of D.
Moreover, if φ is an L‐coloring of D, then ∈T v φ v v V D= {( , ( ))| ( )} is an acyclic transversal of
X H( , ). On the other hand, given an acyclic transversal T v c v c= {( , ), …, ( , )}n n1 1 of H , we obtain
an L‐coloring of D by coloring the vertex vi with ci for ∈i n{1, 2, …, }. Thus, finding an L‐
coloring of D is equivalent to finding an acyclic transversal of X H( , ). Hence, the list‐chromatic
number ℓχ of D, which is the smallest integer k such that D admits an L‐coloring for every list‐
assignment L satisfying ≥L v k| ( )| for all ∈v V D( ), is always at most the DP‐chromatic
number χ D( )DP . Moreover, by using a sequential coloring algorithm it is easy to verify that

≤χ D D D( ) max{Δ ( ), Δ ( )} + 1DP
+ − . Hence, we obtain the following sequence of inequalities:

≤ ≤ ≤ℓχ D χ D χ D D D( ) ( ) ( ) max{Δ ( ), Δ ( )} + 1.DP
+ −

3.2 | DP‐degree colorable digraphs

We say that a digraph D is DP‐degree colorable if D is X H( , )‐colorable whenever X H( , ) is a
cover of D such that ≥X d v d v| | max{ ( ), ( )}v D D

+ − for all ∈v V D( ). In the following, we will give a
characterization of the non‐DP‐degree‐colorable digraphs as well as a characterization of the
edge‐minimal corresponding “bad” covers (see Theorem 7). Clearly, it suffices to do this only
for connected digraphs. For undirected graphs, those characterizations were given by Kim and
Ozeki [13]; for hypergraphs it was done by Schweser [18].

A feasible configuration is a triple D X H( , , ) consisting of a connected digraph D and a cover
X H( , ) of D. A feasible configuration D X H( , , ) is said to be degree‐feasible if ≥X| |v

d v d vmax{ ( ), ( )}D D
+ − for each vertex ∈v V D( ). Furthermore, D X H( , , ) is colorable if D is X H( , )‐

colorable, otherwise it is called uncolorable. The next proposition lists some basic properties of
feasible configurations; the proofs are straightforward and left to the reader.

Proposition 5. Let D X H( , , ) be a feasible configuration. Then, the following statements
hold.

(a) For every vertex ∈v V D( ) and every vertex ∈x Xv, we have ≤d x d v( ) ( )H D
+ + and

≤d x d v( ) ( )H D
− − .
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(b) Let H′ be a spanning subdigraph of H . Then, D X H( , , ′) is a feasible configuration. If
D X H( , , ) is colorable, then D X H( , , ′) is colorable, too. Furthermore, D X H( , , ) is
degree‐feasible if and only if D X H( , , ′) is degree‐feasible.

The above proposition leads to the following concept. We say that a feasible configuration
D X H( , , ) is minimal uncolorable if D X H( , , ) is uncolorable, but D X H a( , , − ) is colorable for
each arc ∈a A H( ). As usual, H a− denotes the digraph obtained from H by deleting the arc a.
Clearly, it follows from the above Proposition that if D X H( , , ) is an uncolorable feasible
configuration, then there is a spanning subdigraph H′ of H such that D X H( , , ′) is a minimal
uncolorable feasible configuration.

To characterize the class of minimal uncolorable degree‐feasible configurations, we first
need to introduce three basic types of degree‐feasible configurations.

We say that D X H( , , ) is a K‐configuration if D is a complete digraph of order n for some
≥n 1, and X H( , ) is a cover of D such that the following conditions hold:

• X n| | = − 1v for all ∈v V D( ),
• for each ∈v V D( ) there is a labeling x x x, , …,v v v

n1 2 −1 of the vertices of Xv such that
∈H H x v V D= [{ | ( )}]i

v
i is a complete digraph for ∈i n{1, 2, …, − 1}, and

• ∪ ∪ ⋯ ∪H H H H= n1 2 −1.

An example of a K‐configuration with n = 4 is given in Figure 1. It is an easy exercise to check
that each K‐configuration is a minimal uncolorable degree‐feasible configuration. Note that for
D| | = 1, we have ∅X =v for the only vertex ∈v V D( ) and ∅H = (and so there is no
transversal of X H( , )).

We say that D X H( , , ) is a C‐configuration if D is a directed cycle of length ≥n 2 and X H( , )

is a cover such that X x= { }v v for all ∈v V D( ) and ∈A H x x vu A D( ) = { | ( )}v u . Note that in this
case, H is a copy of D. Clearly, each C‐configuration is a minimal uncolorable degree‐feasible
configuration.

We say that D X H( , , ) is an odd BC‐configuration if D is a bidirected cycle of odd length ≥5

and X H( , ) is a cover of D such that the following conditions are fulfilled:

• X| | = 2v for all ∈v V D( ),
• for each ∈v V D( ) there is a labeling x x,v v

1 2 of the vertices of Xv such that
∈ ∈A H x x vw A D i( ) = { | ( ) and {1, 2}}v

i
w
i .

FIGURE 1 A K‐configuration and an even BC‐configuration for digraphs
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Note that ∈H H x v V D= [{ | ( )}]i
v
i is a bidirected cycle in H and ∪H H H= 1 2. It is easy to

verify that every odd BC‐configuration is a minimal uncolorable degree‐feasible configuration.

We call D X H( , , ) an even BC‐configuration if D is a bidirected cycle of even length ≥4,
X H( , ) is a cover of D, and there is an arc ∈uu A D′ ( ) such that:

• X| | = 2v for all ∈v V D( ),
• for each ∈v V D( ) there is a labeling x x,v v

1 2 of the vertices of Xv such that
≠ ∈ ∈ ∪A H x x v w u u vw A D i x x x x x x x x( ) = { |{ , } { , ′}, ( ), and {1, 2}} { , , , }v

i
w
i

u u u u u u u u
1

′
2 2

′
1

′
2 1

′
1 2

Again, it is easy to check that every even BC‐configuration is a minimal uncolorable degree‐
feasible configuration. By a BC‐configuration we either mean an even or an odd BC‐
configuration.

Our aim is, to show that we can construct every minimal uncolorable degree‐feasible
configuration from the three basic configurations by using the following operation. Let
D X H( , , )1 1 1 and D X H( , , )2 2 2 be two feasible configurations, which are disjoint, that is,

∩ ∅V D V D( ) ( ) =1 2 and ∩ ∅V H V H( ) ( ) =1 2 . Furthermore, let D be the digraph obtained
from D1 and D2 by identifying two vertices ∈v V D( )1 1 and ∈v V D( )2 2 to a new vertex v*.
Finally, let ∪H H H= 1 2 and let →X V D: ( ) 2V H( ) be the mapping such that

∪

∈ ∈{X
X X v v

X v V D v i
=

if = ,

if ( ) \ { } and {1, 2}

*
v

v v

v
i i i

1 2
1 2

for ∈v V H( ). Then, D X H( , , ) is a feasible configuration and we say that D X H( , , ) is obtained
from D X H( , , )1 1 1 and D X H( , , )2 2 2 by merging v1 and v2 to v*.

Now we define the class of constructible configurations as the smallest class of feasible
configurations that contain each K‐configuration, each C‐configuration, and each BC‐
configuration and that is closed under the merging operation. We say that a digraph is a DP‐
brick if it is either a complete digraph, a directed cycle, or a bidirected cycle. Thus, if D X H( , , ) is
a constructible configuration, then each block of D is a DP‐brick. The next proposition is
straightforward and left to the reader.

Proposition 6. Let D X H( , , ) be a constructible configuration. Then, for each block
∈B D( ) there is a uniquely determined cover X H( , )B B of B such that the following

statements hold:

(a) For each block ∈B D( ) , the triple B X H( , , )B B is a K‐configuration, a C‐configuration,
or a BC‐configuration.

(b) The digraphs HB with ∈B D( ) are pairwise disjoint and ⋃ ∈H H= B D
B

( ) .
(c) For every vertex v from V D( ) we have ⋃ ∈ ∈X X=v B D v V B v

B
( ), ( ) .

Our aim is to prove that the class of constructible configurations and the class of minimal
uncolorable degree‐feasible configurations coincide. This leads to the following theorem.

Theorem 7. Suppose that D X H( , , ) be a degree‐feasible configuration. Then, D X H( , , ) is
minimal uncolorable if and only if D X H( , , ) is constructible.
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For DP‐colorings of undirected graphs, an analogous result was proven by Bernshteyn et al
in [3]. However, they only characterized the graphs that are not DP‐degree colorable, but not
the corresponding bad covers. This was done later by Kim and Ozeki [13]. The third author of
this paper extended the characterization of the non‐DP‐degree colorable graphs to hypergraphs
[18] and characterized also the minimal uncolorable degree‐feasible configurations; since he
used the same terminology as we do and since we need to refer to the undirected version in our
proof, we only state the part of his theorem examining simple undirected graphs.

Regarding undirected graphs, a degree‐feasible configuration is a triple G X H( , , ), whereG is
an undirected (simple) graph and X H( , ) is a cover ofG such that ≥X d v| | ( )v G for all ∈v V G( ).
A degree‐feasible configuration G X H( , , ) is colorable if G is X H( , )‐colorable, otherwise it is
called uncolorable. Moreover, G X H( , , ) is minimal uncolorable if G X H( , , ) is uncolorable but
G X H e( , , − ) is colorable for each edge ∈e E H( ). Furthermore, for undirected graphs, the
definition of a K‐configuration and a BC‐configuration can be deduced from the above definition
for digraphs by considering the underlying undirected graphs (see Figure 2). Finally, for
undirected graphs we define the class of constructible configurations as the smallest class of
configurations that contains each K‐configuration and each BC‐configuration and that is closed
under the merging operation. The proof of the following theorem can be found in [18].

Theorem 8. LetG be a simple graph and let G X H( , , ) be a degree‐feasible configuration.
Then, G X H( , , ) is minimal uncolorable if and only if G X H( , , ) is constructible.

In the following, given a feasible configuration D X H( , , ), we will often fix a vertex ∈v V D( )

and regard the feasible configuration D X H( ′, ′, ′), where D D v′ = − , X ′ is the restriction of X
to V D v( ) \ { } and H H X′ = − v. For the sake of readability, we will write ∕X H X H v( ′, ′) = ( , ) .

First, we state some important facts about minimal uncolorable degree‐feasible configura-
tions. Recall that the digraph D of a degree‐feasible configuration D X H( , , ) is connected by
definition.

Proposition 9. Let D X H( , , ) be a degree‐feasible configuration. If D X H( , , ) is
uncolorable, then the following statements hold:

(a) X d v d v| | = ( ) = ( )v D D
+ − for all ∈v V D( ). As a consequence, D is Eulerian.

(b) Let ∈v V D( ) and let X H X H v( ′, ′) = ( , )/ . Then, there is an acyclic transversal of
X H( ′, ′).

FIGURE 2 A K‐configuration and a BC‐configuration for undirected graphs
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(c) Let ∈v V D( ) and let T be an acyclic transversal of X H X H v( ′, ′) = ( , )/ . Moreover, let
⋃ ∩∈T X T= ( )u N v u

+
( )D

+ and let ⋃ ∩∈T X T= ( )u N v u
−

( )D
− . Then, the arcs from

E X T( , )H v
+ form a perfect matching in ∪H X T[ ]v

+ and the arcs from E T X( , )H v
−

form a perfect matching in ∪H X T[ ]v
− .

Proof.

(a) The proof is by induction on the order of D. The statement is clear if D| | = 1 as in
this case ∅X =v for the only vertex v of D. Now assume that ≥D| | 2. By
assumption, ≥X d v d v| | max{ ( ), ( )}v D D

+ − for all ∈v V D( ). Hence, it suffices to show
≤X d v d v| | min{ ( ), ( )}v D D

+ − for all ∈v V D( ). Suppose, to the contrary, that there is a
vertex ∈v V D( ) with X d v d v| | > min{ ( ), ( )}v D D

+ − , say X d v| | > ( )v D
− (by symmetry). Let

D D v′ = − and let X H X H v( ′, ′) = ( , )/ . We claim that D′ is not X H( ′, ′)‐colorable.
Otherwise, there would be an acyclic transversal T of X H( ′, ′). As X d v| | > ( )v D

− it
follows from (C2) that there is a vertex ∈x Xv such that ∉x x A H′ ( ) for all ∈x T′ .
Consequently, ∪T x{ } is an acyclic transversal of X H( , ) as x has no in‐neighbor in

∪H T x[ { }], that is, D X H( , , ) is colorable, a contradiction. Thus, D′ is not X H( ′, ′)‐
colorable, as claimed. Hence, D′ contains a connected component D″ such that
D X H( ″, ″, ″) is uncolorable, where X″ is the restriction of X ′ to V D( ″) and

⋃ ∈H H X″ = ′[ ]v V D v( ″) . By applying the induction hypothesis to D X H( ″, ″, ″) we
conclude that X d w d w| | = ( ) = ( )w D D″

+
″
− for all ∈w D″. As D is connected, there is a

vertex ∈w D″ that is adjacent to v in D. By symmetry, we may assume ∈wv A D( ).
But then,

≥ ≥d w X d w d w d w( ) = | | max{ ( ), ( )} ( ) + 1,D w D D D″
+ + −

″
+

which is impossible. This proves (a).

(b) For this proof, let D D v′ = − and let X H X H v( ′, ′) = ( , )/ . Let D″ be an arbitrary
component of D′, let X″ be the restriction of X ′ to V D( ″), and let

⋃ ∈H H X″ = [ ]u V D u( ″) . Then, D X H( ″, ″, ″) is a degree‐feasible configuration. As D

is connected, there is at least one vertex ∈u V D( ″) that is in D adjacent to v, say
∈uv A D( ). By (a), this implies X d u d u| | = ( ) > ( )u D D

+
″

+ . Again by (a), we conclude that
D X H( ″, ″, ″) is colorable, that is, X H( ″, ″) admits an acyclic transversal TD″. Let T be
the union of the sets TD″ over all components D″ of D v− . Then, T is an acyclic
transversal of X H( ′, ′).

(c) For the proof, we first assume that there is a vertex ∈x Xv such that no vertex ofT is an
out‐neighbor of x in H . Then, similarly to the proof of (a), we conclude that ∪T x{ } is an
acyclic transversal of X H( , ), a contradiction. Hence, each vertex ∈x Xv has in H at least
one out‐neighbor belonging to T . Moreover, for each vertex ∈u N v( )D

+ and for the
unique vertex ∈ ∩x T X′ u there may be at most one vertex ∈x Xv with ∈xx A H′ ( ) (by
(C2)). As X d v N v| | = ( ) = | ( )|v D D

+ + , this implies that for each vertex ∈x Xv there is exactly
one vertex ∈x T′ with ∈xx A H′ ( ). Thus, the arcs from Xv to ⋃ ∩∈T X T= ( )u N v u

+
( )D

+

are a perfect matching in ∪H X T[ ]v
+ as claimed. Using a similar argument, it follows

that E T X( , )H v
− is a perfect matching in ∪H X T[ ]v

− . □
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The next proposition shows the usefulness of the merging operation.

Proposition 10. Let D X H( , , )1 1 1 and D X H( , , )2 2 2 be two disjoint feasible configurations,
and let D X H( , , ) be the configuration that is obtained from D X H( , , )1 1 1 and D X H( , , )2 2 2

by merging two vertices ∈v V D( )1 1 and ∈v V D( )2 2 to a new vertex v*. Then, D X H( , , ) is a
feasible configuration and the following statements are equivalent:

(a) Both D X H( , , )1 1 1 and D X H( , , )2 2 2 are minimal uncolorable degree‐feasible configura-
tions.

(b) D X H( , , ) is a minimal uncolorable degree‐feasible configuration.

Proof. First, we show that (a) implies (b). Clearly, D X H( , , ) is degree‐feasible. Assume
that D X H( , , ) is colorable. Then, there is an acyclic transversal T of X H( , ). As

∪X X X=v v v* 1 2, this implies that at least one of v1 and v2 (by symmetry, we can assume it
is v1) satisfies ∩T X| | = 1v1 . Thus, ∩T T V H= ( )1 1 is an acyclic transversal of X H( , )1 1

and so D X H( , , )1 1 1 is colorable, a contradiction to (a). This proves that D X H( , , ) is
uncolorable. Now let ∈a A H( ) be an arbitrary arc. By symmetry, we may assume
∈a A H( )1 . Since D X H( , , )1 1 1 is minimal uncolorable, there is an acyclic transversal T1 of
X H a( , − )1 1 . Since D X H( , , )2 2 2 is also uncolorable and degree‐feasible, there is an acyclic
transversal T2 of X H v( , )/2 2 2 (by Proposition 9(b)). However, as ∪H H H= 1 2 and
∩ ∅H H =1 2 , the set ∪T T T= 1 2 is an acyclic transversal of X H a( , − ) and so

D X H a( , , − ) is colorable. Thus, (b) holds.
To prove that (b) implies (a), we first show that D X H( , , )1 1 1 is minimal uncolorable.

Assume that D X H( , , )1 1 1 is colorable, that is, X H( , )1 1 has an acyclic transversal T1. Since
D X H( , , ) is a minimal uncolorable degree‐feasible configuration and as H X− v

2 2 is a
proper subdigraph of H X− v*, there is an acyclic transversal T2 of X H v( , )/2 2 2 (by
Proposition 9(b)). Then again, ∪T T T= 1 2 is an acyclic transversal of X H( , ),
contradicting (b). Thus, D X H( , , )1 1 1 is uncolorable. Now let ∈a A H( )1 be an arbitrary
arc. Then, as D X H( , , ) is minimal uncolorable and ∈a A H( ), there is an acyclic
transversal T of X H a( , − ) and ∩T T V H= ( )1 1 clearly is an acyclic transversal of
X H a( , − )1 1 . Consequently, D X H a( , , − )1 1 1 is colorable. This shows that D X H( , , )1 1 1 is
minimal uncolorable. By symmetry D X H( , , )2 2 2 is minimal uncolorable, too.

It remains to show that D X H( , , )j j j is degree‐feasible for ∈j {1, 2}. As D X H( , , ) is an
uncolorable degree‐feasible configuration, Proposition 9(a) implies that

∈X d v d v v V D| | = ( ) = ( ) for all ( ).v D D
+ − (1)

Consequently, each vertex from D v−j j is eulerian in D j. Since

∑ ∑
∈ ∈

d u d u A D( ) = ( ) = | ( )|
u V D

D
u V D

D
j

( )

+

( )

−

j

j

j

j

is the number of arcs of D j, it follows that d v d v( ) = ( )
D

j
D

j+ −
j j , and so D j is Eulerian for

∈j {1, 2}. Moreover, it follows from (1) that X d v d v d v| | = ( ) = ( ) = ( )v D D D
+ + −

j j for all
∈v V D v( ) \ { }j j and ∈j {1, 2}. If X d v| | < ( )v D

j+
j for some ∈j {1, 2}, then X d v| | > ( )v D

j+ 3−j3−
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and so D X H( , , )j j j3− 3− 3− would be colorable by Proposition 9(a), a contradiction. Hence,
D X H( , , )j j j is degree‐feasible for ∈j {1, 2}. □

To prove Theorem 7, we need some more tools. The first one, which will be frequently used
in the following, is the so‐called shifting operation. Let D X H( , , ) be a minimal uncolorable
degree‐feasible configuration, let D D v′ = − for some ∈v V D( ), and let T be an acyclic
transversal of X H X H v( ′, ′) = ( , )/ (which exists by Proposition 9(b)). Then it follows from
Proposition 9(c) that for each vertex ∈x Xv there is exactly one vertex ∈x T′ with ∈xx A H′ ( )

and exactly one vertex ∈x T″ with ∈x x A H″ ( ). Let v′ and v″ be the vertices from V D( ) such
that ∈x X′ v′ and ∈x X″ v″. Then, ∪T T x x′ = \{ ′} { } and ∪T T x x″ = \{ ″} { } are acyclic
transversals of X H v( , )/ ′ and X H v( , )/ ″, respectively, since in H T[ ′] (respectively H T[ ″]) the
vertex x has no out‐neighbor (respectively no in‐neighbor) and, hence, x cannot be contained in
a directed cycle. We say that T′ (respectively T″) evolves from T by shifting the color x′

(respectively x″) to x . Of course, the shifting operation may be applied repeatedly. The next
proposition can be easily deduced from Proposition 9 by applying the shifting operation. The
statements of the proposition are illustrated in Figure 3.

Proposition 11. Let D X H( , , ) be a minimal uncolorable degree‐feasible configuration, let
∈v V D( ), and let T be an acyclic transversal of X H X H v( ′, ′) = ( , )/ . Then, the following

statements hold:

(a) For every vertex ∈x Xv we have ∩N x T| ( ) | = 1H
+ and ∩N x T| ( ) | = 1H

− .
(b) Let ∈u N v( )D

+ and let ∩X T x= { }u u . Then, there is a vertex ∈x Xv such that
∈xx A H( )u and ∩ ∅N x T( ) =H u

− .
(c) Let ∈w N v( )D

− and let ∩X T x= { }w w . Then, there is a vertex ∈x Xv such that
∈x x A H( )w and ∩ ∅N x T( ) =H w

+ .

Proof. Statement (a) is a direct consequence of Proposition 9(c). To prove (b) let
∈u N v( )D

+ and let ∩X T x= { }u u . Again from Proposition 9(c) it follows that there is a
vertex ∈x Xv with ∈xx A H( )u . Now assume that there is a vertex ∈ ∩x N x T′ ( )H u

− . Let
T′ be the transversal of X H u( , )/ that evolves fromT by shifting xu to x . Then, both x′ and
x are in‐neighbors of xu in H and so ∩ ≥N x T| ( ) ′ | 2H u

− , a contradiction to (a). This proves
(b). By symmetry, (c) follows. □

FIGURE 3 Forbidden configurations for D X H( , , )
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Proposition 12. Let D X H( , , ) be a minimal uncolorable degree‐feasible configuration
and let ∈u v V D, ( ) such that there are opposite arcs between u and v. Then, ∪H X X[ ]u v is
a bidirected graph.

Proof. Suppose the statement is false. Then there are vertices ∈x Xu u and ∈x Xv v with
∈x x A H( )u v and ∉x x A H( )v u . Since D X H( , , ) is minimal uncolorable, there is an

acyclic transversal T of X H x x( , − )u v . Furthermore, T must contain both xu and xv as
otherwise T would be an acyclic transversal of X H( , ), a contradiction. Then, T T x′ = \{ }v
is an acyclic transversal of ∕X H X H v( ′, ′) = ( , ) . As ∈u N v( )D

+ , it follows from Proposition
11(b) that there is a vertex ∈x Xv with ∈xx A H( )u . Since ∉x x A H( )v u , ≠x xv. LetT* be
the transversal that evolves from T′ by shifting xu to xv. Then, xu has an in‐neighbor x*

from T* in H (by Proposition 11(a)) and ∉x X* v (since ∉x x A H( )v u ). Moreover, x* is
contained in the transversal T̃ that evolves from T′ by shifting xu to x and so

⊆ ∩x x N x T{ , } ( ) ˜* H u
− . Consequently, ∩N x T| ( ) ˜ | > 1H u

− , which contradicts Proposition
11(a). Hence x x= v, and so ∈x x A H( )v u , a contradiction. □

In particular, the above proposition implies the following concerning the shifting operation.
Let D X H( , , ) be a minimal uncolorable degree‐feasible configuration, let ∈v V D( ) and letT be
an acyclic transversal of X H X H v( ′, ′) = ( , )/ (which exists by Proposition 9(b)). Then it follows
from the above proposition together with Propositions 11(b) and (c) that for each vertex u that is
in D adjacent to v and for the unique vertex ∈ ∩x X Tu u there is exactly one vertex ∈x Xv v that
is in H adjacent to xu. Hence, xv is the unique vertex from Xv to which we can shift the color xu.
Thus, in the following we may regard the shifting operation as an operation in the digraph D

rather than in H and write →u v to express that we shift the color from the corresponding
vertex xu to xv.

As another consequence of Proposition 12 we easily obtain the following corollary.

Corollary 13. Let D X H( , , ) be a degree‐feasible minimal uncolorable configuration such
that D is a bidirected graph. Then H is a bidirected graph, too.

Having all those tools available, we are finally ready to prove our main theorem.

3.3 | Proof of Theorem 7

This subsection is devoted to the proof of Theorem 7, which we recall for convenience.

Theorem 7. Suppose that D X H( , , ) is a degree‐feasible configuration. Then, D X H( , , ) is
minimal uncolorable if and only if D X H( , , ) is constructible.

Proof. If D X H( , , ) is constructible, then D X H( , , ) is minimal uncolorable (by
Proposition 10 and as each K‐, C‐, and BC‐configuration is a minimal uncolorable
degree‐feasible configuration).

Now let D X H( , , ) be a minimal uncolorable degree‐feasible configuration. We prove
that D X H( , , ) is constructible by induction on the order of D. If D| | = 1, then

BANG‐JENSEN ET AL. | 87



∅V D v X( ) = { }, =v and ∅H = and so D X H( , , ) is a K‐configuration. Thus, we may
assume that ≥D| | 2. By Proposition 9(a),

∈X d v d v v V D| | = ( ) = ( ) for all ( ).v D D
+ − (2)

We distinguish between two cases.

Case 1. D contains a separating vertex v*. Then, D is the union of two connected induced
subdigraphs D1 and D2 with ∩V D V D v( ) ( ) = { }*1 2 and D D| | < | |j for ∈j {1, 2}. By
Equation (2), all vertices from D j except from v* are Eulerian in D j (for ∈j {1, 2}).
However, since

∑ ∑
∈ ∈

d u d u A D( ) = ( ) = | ( )|
u V D

D
u V D

D
j

( )

+

( )

−

j

j

j

j

is the number of arcs of D j, it follows that d v d v( ) = ( )* *
D D
+ −
j j and so D j is Eulerian for

∈j {1, 2}. For ∈j {1, 2}, by j we denote the set of all subsets T of H with ∩T X| | = 1v

for all ∈v V D( )j and ∩T X| | = 0u for all ∈u V D v( ) \ { }*j3− such that H T[ ] is acyclic. As
D X H( , , ) is uncolorable and degree‐feasible, both 1 and 2 are non‐empty (by
Proposition 9(b)). Moreover, for ∈j {1, 2}, let Xj be the set of all vertices of Xv* that do not
occur in any set from j . We claim that ∪X X X=v 1 2* . For otherwise, there is a vertex
∈ ∪x X X X\( )v 1 2* . Then, x is contained in two sets ∈T1 1 and ∈T2 2 , and so

∪T T T= 1 2 is an acyclic transversal of X H( , ). Thus, D X H( , , ) is colorable, a
contradiction. Consequently, ∪X X X=v 1 2* . For ∈j {1, 2}, we define a cover X H( , )j j of
D j as follows. For ∈v V D( )j , let

≠
X

X v v

X v v
=

if

if = ,

*

*v
j v

j

⎧⎨⎩

and let ⋃ ∈H H X=j v V D v
j

( )j
⎡⎣ ⎤⎦. Then, D X H( , , )j j j is an uncolorable feasible configuration

for ∈j {1, 2}: Suppose w.l.o.g. that D X H( , , )1 1 1 has an acyclic transversal T . Then T is in
1 , but T contains a vertex ∈x X X=v

1
1* , which is impossible. Furthermore, for each

vertex ∈v V D v( ) \ { }*j , Equation (2) implies that X d v d v| | = ( ) = ( )v D D
+ +

j . As D X H( , , )j j j is

uncolorable and D j is connected, it follows from Proposition 9(a) that ≤X d v| | ( )*
v
j

D
+

* j for
∈j {1, 2}. Since ∪ ∪X X X X X= =v v v1 2

1 2* * *, we conclude from (2) that

≥ ∪X X X X X d v d v d v| | + | | | | = | | = ( ) = ( ) + ( ),* * *
v v v v v D D D
1 2 1 2 + + +
* * * * * 1 2

and, thus, X d v d v| | = ( )(= ( ))* *
v
j

D D
+ −

* j j and ∩ ∅X X =
* *v v

1 2 . Consequently, D X H( , , )j j j is a
degree‐feasible configuration. Moreover, ∪H H H′ = 1 2 is a spanning subdigraph of H
and ∩ ∅V H V H( ) ( ) =1 2 . So, D X H( , , ′) is a degree‐feasible configuration that is obtained
from two isomorphic copies of D X H( , , )1 1 1 and D X H( , , )2 2 2 by the merging operation.
Clearly, D X H( , , ′) is uncolorable. Otherwise, there would exist an acyclic transversalT of
X H( , ′) and by symmetry we may assume that T would contain a vertex of Xv

1
*. But then,

∩T T V H= ( )1 1 would be an acyclic transversal of X H( , )1 1 , contradicting that
D X H( , , )1 1 1 is uncolorable. As D X H( , , ) is minimal uncolorable and as H′ is a spanning
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subhypergraph of H , this implies that H H= ′ and D X H( , , ) is obtained from two
isomorphic copies of D X H( , , )1 1 1 and D X H( , , )2 2 2 by the merging operation. Then, by
Proposition 10, both D X H( , , )1 1 1 and D X H( , , )2 2 2 are minimal uncolorable. Applying the
induction hypothesis leads to D X H( , , )j j j being constructible for ∈j {1, 2}, and so
D X H( , , ) is constructible. Thus, the proof of the first case is complete.

Case 2. D is a block. Then, each vertex of D is contained in a cycle of the underlying
graph G D( ). We prove that D X H( , , ) is a K‐, C‐ or BC‐configuration by examining the
cycles that may occur in G D( ) and showing that those always force the structure of
D X H( , , ) to be as claimed. This is done via a sequence of claims. In the first three claims,
we analyze the case where D contains a digon and show that in this case, both D and H

are bidirected. Then, we can apply Theorem 8 to the undirected configuration
G D X G H( ( ), , ( )) to deduce that D X H( , , ) is a K‐ or BC‐configuration. Afterwards, we
analyze the case that D does not contain any digons and prove that this implies that
D X H( , , ) is a C‐configuration. Recall that if C is a cycle in the underlying graph G D( ),
then DC is the maximal subdigraph of D such that G D C( ) =C . □

Claim 1. Let C be a cycle of length 3 in the underlying graph G D( ). If DC is not a
directed cycle, then V C( ) induces a complete digraph in D.

Proof. Let v v v, ,1 2 3 be the vertices ofC. By symmetry, assume that ⊆v v v v v v{ , , }3 1 1 2 3 2 A D( ).
We prove that ∈v v A D( )1 3 . LetT be an acyclic transversal of X H X H v( ′, ′) = ( , )/ 1, let xj be
the unique vertex from ∩X Tvj (for ∈j {2, 3}) and let ∈x Xv1 1

such that ∈x x A H( )3 1 (such
a vertex exists by Proposition 11(c)). Then, by Proposition 11(c), ∉x x A H( )3 2 . Furthermore,
by Proposition 11(a), x1 must have an out‐neighbor x inT . Assume that ∈x T x x\ { , }2 3 . Then
we can shift →v v3 1, →v v2 3 and →v v1 2 and get a new acyclic transversal T′ of X H( ′, ′).
Moreover, if x ′2 is the vertex from ∩X T′v2

, due to the shifting we have ∈x x A H′ ( )1 2 . Since
∪ ∪T X X T X X\( ) = ′\( )v v v v2 3 2 3

we conclude ∩ ⊇N x T x x( ) ′ { ′, }H
+

1 2 and so
∩ ≥N x T| ( ) ′ | 2H

+
1 , contradicting Proposition 11(a) (see Figure 4). Hence, ∈x x x{ , }2 3 . If

x x= 2 (and so x x′ =2 2), then starting fromT and then shifting →v v3 1 and →v v2 3 leads to
an acyclic transversal T* of X H v( , )/ 2 such that ∩ ≥N x T| ( ) | 2*H

−
2 , in contradiction to

Proposition 11(a). Thus, x x= 3 and so ∈x x A H( )1 3 . However, this implies ∈v v A D( )1 3 (by
(C2)), as claimed. By symmetry we conclude that D V C[ ( )] is a complete digraph and the
proof is complete. □

Claim 2. Let C be an induced cycle in the underlying graph G D( ). If DC contains a
digon, then DC is a bidirected cycle.

Proof. Assume, to the contrary, that DC is not bidirected. Then (by symmetry) we can
choose a cyclic ordering v v v, , …, p1 2 of the vertices of C such that v v v v,1 2 2 1 and v vp1 are
arcs of D and that ∉v v A D( )p 1 . Let T be an acyclic transversal of X H X H v( ′, ′) = ( , )/ 1.
For ∈i p{2, 3, …, } let xi be the vertex from ∩X Tvi . By Proposition 11(b) and Proposition
12, there is a vertex ∈x Xv1

that is joined to x2 by opposite arcs and a vertex ∈x X′ v1
with

∈x x A H′ ( )p . Moreover, by Proposition 11(a), ≠x x′. By shifting the vertices
→ → →v v v v v v, , …, p p2 1 3 2 −1 counterclockwise on the cycle C we obtain from

Proposition 11(c) that x has an out‐neighbor x′p in Xp. If we further shift →v vp1 , we
get a new acyclic transversal T′ of X H( ′, ′) such that ∈x T′′p . By Proposition 11(a), there
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must exist a vertex ∈y T′ with ∈yx A H( ). As x2 is the unique in‐neighbor of x from T ,
since v1 has no neighbors besides v2 and vp from V C( ), and as the shifting only affected
vertices from C, we conclude that ∈ ∪y X Xv vp2

. However, since ∈xx A H( )′p , it follows
from Proposition 11(a) that ∉x T′2 . Hence, ∈y Xvp and so ∈v v A D( )p 1 , a
contradiction. □

Claim 3. Suppose that D contains a digon. Then, D is bidirected.

Proof. Assume, to the contrary, that D is not bidirected. As D is a block this implies that
in the underlying graphG D[ ] there is a cycleC of minimum length such that DC contains
a digon but is not bidirected. Since C has minimum length, we conclude that C is an
induced cycle of G D( ), but then it follows from Claim 2 that DC is bidirected, a
contradiction. This proves the claim. □

Suppose that D contains at least one digon. Then, D is bidirected (by Claim 3) and it follows from
Corollary 13 that H is bidirected, too. Consequently, G D X G H( ( ), , ( )) is a degree‐feasible
configuration. Furthermore, an acyclic transversal of X H( , ) is an independent transversal of
X G H( , ( )) and vice versa, and it easy to check that G D X G H( ( ), , ( )) is minimal uncolorable
(as D X H( , , ) is minimal uncolorable). Then, as G D( ) is a block, it follows from Theorem 8 that
G D X G H( ( ), , ( )) is a K‐ or a BC‐configuration. As a consequence, D X H( , , ) is a K‐ or a BC‐
configuration and there is nothing left to show. Hence, from now on we may assume the following:

FIGURE 4 D X H( , , ) before and after shifting → →v v v v,3 1 2 3, and →v v1 2

D does not contain a digon . (3)
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In the remaining part of the proof we will show that under the assumption (3), the
configuration D X H( , , ) is a C‐configuration.

Claim 4. The underlying graph G D( ) does not contain K4.

Proof. Otherwise, G D( ) contains a cycle C such that DC is not a directed cycle.
Hence, by Claim 1, D would contain a complete digraph on three vertices, which
contradicts (3). □

Recall that K4
− denotes the (undirected) graph that results from K4 by deleting any edge.

Claim 5. The underlying graph G D( ) does not contain any induced K4
−.

Proof. Assume that G D( ) contains an induced K4
−, say G G D˜ = ( ˜). Then, by (3) and

Claim 1, V D v v v v( ˜) = { , , , }1 2 3 4 and A D v v v v v v v v v v( ˜) = { , , , , }1 2 1 3 2 4 3 4 4 1 . Let T be an acyclic
transversal of X H X H v( ′, ′) = ( , )/ ,1 and for ∈i {2, 3, 4} let ∈ ∩x X Ti vi . Then it follows
from Proposition 11(b),(c) that there are vertices ∈x x X, ′ v1

with ∈x x A H′ ( )2 and
∈xx A H( )3 . By Proposition 11(a), ≠x x′. By shifting →v v3 1, we obtain that x4 has an in‐

neighbor ∈x X′ v3 3
(by Proposition 11(c)). We claim that ∈x x A H′ ( )′3 . To see this, starting

fromT , we can shift → → →v v v v v v, ,3 1 4 3 2 4 and then →v v1 2 and obtain another acyclic
transversal T′ of X H( ′, ′) with ∈x T′′3 . Then, x′ must have an out‐neighbor y in T′ (by
Proposition 11(a)). However, as ≠x x′, we deduce that ∉y Xv2

. As we only shifted along
vertices of D̃, we conclude that ∉ ∪ ∪y T X X X′\( )2 3 4 (since otherwise

⊆ ∩y x N x T{ , } | ( ′) |H2
+ , which leads to a contradiction to Proposition 11(a)). Moreover,

as ∉v v A D( )1 4 , this implies that ∈y Xv3
and so y x= ′3. Hence, ∈x x A H′ ( )′3 , as claimed.

But now, starting from T we can shift → →v v v v,3 1 4 3 and →v v1 4 and obtain an acyclic
transversal T* of X H( ′, ′) that contains both x2 and x ′3. As a consequence,

∩ ≥N x T| ( ′) | 2*H
+ , which contradicts Proposition 11(a). This proves the claim. □

Claim 6. LetC be an induced cycle of the underlying graphG D( ). Then, DC is a directed
cycle.

Proof. The proof is by reductio ad absurdum. Then, we can choose a cyclic ordering of
the vertices of C, say v v v, , …, p1 2 , such that ⊆v v v v A D{ , } ( )p1 2 1 . Furthermore, let T be an
acyclic transversal of X H X H v( ′, ′) = ( , )/ 1 and, for ∈i p{2, …, } let ∈ ∩x X Ti vi . Then, by
Proposition 11(a),(b), there are vertices ≠x x′ from Xv1

with ∈xx A H( )2 and
∈x x A H′ ( )p . Moreover, by shifting → → →v v v v v v, , …,p p p1 −1 2 3 clockwise around C,

we obtain that x′ has an out‐neighbor ∈x X′ v2 2
(by Proposition 11(c)). We claim that

∈x x A H( )′3 2 . Assume, to the contrary, that ∉x x A H( )′3 2 and letT′ be the transversal that
results from T by shifting →v v2 1. Then, x ′2 must have an in‐neighbor y in T′ (by
Proposition 11(a)) and ∉y Xvi for ∈i p{1, 2, …, } (as ∉x x A H( )′3 2 , as ∉x T′ ′ and as C is
an induced cycle). If instead, starting from T , we shift the vertices
→ →v v v v v v, , …,p p p1 −1 2 3, we obtain an acyclic transversal T* of X H v( , )/ 2 that

contains both x′ as well as y, contradicting Proposition 11(a) (as x ′2 has the two in‐
neighbors x y′, in T*). Thus, ∈x x A H( )′3 2 and hence ∈v v A H( )3 2 . As a consequence,
there is also a vertex ≠x x′3 3 from Xv3

such that ∈x x A H( )′3 2 . Now we can shift →v v2 1

and obtain an acyclic transversal of X H v( , )/ 2. By repeating the same argumentation as
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above we conclude that ∈x x A H( )′3 4 . Now, we can iterate this procedure for the
remaining vertices of C and obtain the following:

D D

D

alternatingis , ie the vertices from alternatively have two

in‐neighbours and two out‐neighbours in .

C C

C
(4)

Note that this implies, in particular, that C is even. Moreover, we conclude that for
∈i p{2, …, } there are vertices ≠x x ′i i from Xvi such that the following holds:

• There is an acyclic transversal T of X H X H v( ′, ′) = ( , )/ 1 that contains the vertices
x x x, , …, p2 3 , and

• ⊆xx x x xx x x A H{ , ′ , , ′ } ( )′ ′p p2 2 and for ∈i p{2, 4, …, − 2} we have ∈x x x x A H, ( )′ ′i i i i+1 +1 .

Note that (beginning from T) by shifting → → →v v v v v v, , … p p2 1 3 2 −1 counterclockwise
around C and then shifting →v vp1 we obtain an acyclic transversal T′ of X H( ′, ′) that
contains the vertices x x x, , …,′ ′ ′p2 3 .

Since D X H( , , ) is minimal uncolorable, ∪H T x[ { }] contains a directed cycle that
must contain x, sayCx . Moreover, by Proposition 11(a) and since ∈xx A H( )2 , x and x2 are
consecutive on Cx . Let z denote the vertex different from x2 such that x and z are
consecutive on Cx . Then, ∉z x x x{ , , …, }p3 4 . This is due to the fact that C is an induced
cycle in G D( ) (and so ∉v v A D( )i1 for ∈i p{3, 4, …, − 1}) and that ∈xx A H( )′p and,
therefore, ∉xx A H( )p . Moreover, we obtain the following:

∪C H T x

C T V C

is an induced directed cycle of [ { }] and

no vertex from is adjacent to any vertex from \ ( ).

x

x x
(5)

Otherwise, starting from T we could shift the vertices around Cx and would obtain
vertices ∈v V D( )* , ∈ ∩x X V C( )* v x* and an acyclic transversal T* of H X v( , )/ * such
that the neighbors of x* on Cx are in T* and such that x* has another in‐ or out‐neighbor
in T*, contradicting Proposition 11(a). Finally, we conclude that

x x x V Cno vertex from { , , …, } is in ( ).p x3 4 (6)

Assume, to the contrary, that there is an index ≠i 2 with ∈x V C( )i x . Then, as C is
induced and since x xi i+1 as well as x xi i−1 are not arcs of H , both neighbors of xi in Cx

must be from V H x x x( ) \ { , , …, }p2 3 . But then, starting from T we can shift
→ → →x x x x x x, , …, i i2 3 2 −1 and obtain an acyclic transversal T̃ of X H v( , )/ i such that

xi either has two in‐ or out‐neighbors from T̃ , contradicting Proposition 11(a). By
analogous arguments we conclude that ∪H T x[ ′ { }] contains a directed cycle C′x and x and
x′p are consecutive on C′x . Furthermore, if z′ denotes the vertex different from x′p such that x
and z′ are consecutive on C′x , we have ∉z x x x{ , , …, }′ ′ ′p2 3 −1 . Moreover, the following holds:

∪

( )
C H T x

C T V C

is an induced directed cycle of [ ′ { }] and

no vertex from is adjacent to any vertex from ′\

′

′ ′

x

x x

(7)
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and

x x x V Cno vertex from { , , …, } is in ( ).′ ′ ′ ′p x2 3 −1 (8)

SinceT x x x T x x x\ { , , …, } = ′\ { , , …, }′ ′ ′p p2 3 2 3 , it follows from Proposition 11(a) that z z= ′. Let y
denote the vertex fromCx different from x such that x2 and y are consecutive onCx and let y′
denote the vertex from C ′x different from x such that x′p and y′ are consecutive on C′x . From
(6) and (8) we obtain that y and y′ are fromT x x x T x x x\ { , , …, } = ′\ { , , …, }′ ′ ′p p2 3 2 3 . Combining
(5) and (7) with the fact that z is contained in bothCx as well asCx′ then leads to y y= ′ and
to H V C x H V C x[ ( ) \ { }] = [ ( ′) \ { }]′x x p2 being an induced directed path of H . Let ∈v V D( )
denote the vertex such that ∈y Xv. Then we have ∈v v A D( )2 and ∈v v A D( )p and so
v v v v{ , , , }p1 2 either induces a K4

− in G D( ) (which is impossible by Claim 5) or a cycle
C′ of length 4 in G D( ) such that DC′ is non‐alternating in D, contradicting (4). This proves
the claim. □

Claim 7. All cycles in G D( ) are induced, that is, no cycle has a chord.

Proof. LetC be a cycle inG D( ). We prove thatC cannot contain a chord by induction on
the length p of C. If p = 4, then C has no chord as otherwise, the vertices of C would
either induce a K4 or a K4

− in G D( ), contradicting Claims 4 or 5. Now assume ≥p 5. If C
has a chord, say ∈uv E G( ), then the edge uv divides the cycle C into two smaller cycles
C1 and C2. Then it follows from the induction hypothesis that neither C1 nor C2 has a
chord. Hence, C1 and C2 are induced cycles ofG D( ), and Claim 6 implies that DC1

and DC2

are directed cycles. Furthermore, uv is the only chord of C, since otherwise G V C[ ( )]

would contain a smaller cycle than C whose edges would have no cyclic orientation in D,
contradicting Claim 6. By symmetry, we may assume that ∈uv A D( ). Then, in DC the
vertex u has two in‐neighbors, and the vertex v has two out‐neighbors, say w and w′.
Moreover, by symmetry, C1 contains the vertices u v, , and w and C2 contains the vertices

FIGURE 5 Setting up D X H( , , )
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u v, , and w′. LetT be an acyclic transversal of X H v( , )/ and let ∈ ∩u X Tu1 , ∈ ∩w X Tw1 ,
and ∈ ∩w X T′ w1 ′ . Furthermore we choose a cyclic ordering of the vertices of C such that
w is the left neighbor of v and w′ is the right neighbor. Then, there are vertices

∈v v v X, , v1 2 3 with v w v w, ′1 1 2 1 and ∈u v A H( )1 3 (by Proposition 11(b),(c)). Furthermore,
by Proposition 11(a), ≠v v1 2. By shifting →w v and the remaining vertices ofC (except v)
counterclockwise around C, we get an acyclic transversal T′ of X H w( , )/ ′ with ∈v T′1 .
Thus, by Proposition 11(c), there is a vertex ∈w X′ w2 ′ with ∈v w A H( )′1 2 . In particular,
≠w w′ ′2 1 (as ≠v v1 2). By similar argumentation, v2 has an out‐neighbor ≠w w2 1 from Xw

(see Figure 5). Now we claim that ∉v v v{ , }3 1 2 . Assume that v v=3 1. Then, starting from
T , we can shift each vertex from C2 counterclockwise (beginning with →u v) around C2

(which gives us a transversal of X H w( , )/ ′ containing v1) and, afterwards shift →v w′.
Then we get an acyclic transversal T* of X H v( , )/ that contains w1 as well as w ′2 and so

∩ ≥N v T| ( ) | 2*H
+

1 , a contradiction to Proposition 11(a). Hence, ≠v v3 1. By repeating the
argumentation with C1 instead of C2 we conclude that ≠v v3 2. Clearly, v3 has an out‐
neighbor ∈w X′ w3 ′ and an out‐neighbor ∈w Xw3 (shift clockwise around C2, respectively
C1). This is also illustrated in Figure 6. By (C2) and since ∉v v v{ , }3 1 2 , the vertex w ′3 is
neither w ′1 nor w ′2. Now finally, starting from T , we shift each vertex (beginning with
→u v, ie, →u v1 3) counterclockwise around C2 such that we get an acyclic transversal of
X H w( , )/ ′ and, afterwards, we shift →v w′ (ie, →v w ′3 3). This gives us an acyclic
transversal T̃ of X H v( , )/ with ∈w T̃′3 . We claim that v2 has no out‐neighbor in T̃ (which
would contradict Proposition 11(a)). As uv is the unique chord of C, we conclude that
∉w V C( )2 and so ∈w T̃1 . Since ∈v w A H( )1 1 , (C2) implies that ∉v w A H( )2 1 .

Furthermore, the out‐neighbor of v2 from T̃ must be contained in⋃ ∈ Xv V C v′ ( ) ′2
as w ′1 is

the out‐neighbor of v2 from T and since we only shifted around C2. But since C2 has no
chords and since ∉vu A H( ), the out‐neighbor of v2 from T̃ can only be the vertex from

∩X T̃w′ , that is, w ′3. However, ∈v w A H( )′3 3 and so ∉v w A H( )′2 3 . Thus, v2 has not
out‐neighbor from T̃ , a contradiction. This proves the claim.

FIGURE 6 Including the neighbors of v3
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The remaining part of the proof is straightforward: As D is a block, G D( ) contains an
induced cycle C. Then, DC is a directed cycle by Claim 6. We claim that D D= C.
Otherwise, there would be a vertex ∈v V D V C( )\ ( ). Moreover, since D and therefore
G D( ) is a block, there are two internally disjoint paths P and P′ inG D( ) from v to vertices
≠w w′ such that ∩V P V C w( ) ( ) = { } and ∩V P V C w( ′) ( ) = { ′}. Since all cycles of G D( )

are induced (by Claim 7), w and w′ are not consecutive inC. Let PC and P′C denote the two
internally disjoint paths between w and w′ contained in C. Then, P P, ′ together with PC,
respectively P P, ′ together with P′C form induced cycles C1 and C2 of G D( ). Since DC is a
directed cycle, either DC1

or DC2
is not a directed cycle, contradicting Claim 6. Hence,

D D= C, that is, D is a directed cycle. As D X H( , , ) is a minimal uncolorable degree‐
feasible configuration, we easily conclude that D X H( , , ) is a C‐configuration. This
completes the proof. □

4 | CONCLUDING REMARKS

The next two statements are direct consequences of Theorem 7 and Proposition 6. In particular,
Theorem 15 is a generalization of Theorem 2.

Corollary 14. Let D X H( , , ) be a degree‐feasible configuration. If D X H( , , ) is minimal
uncolorable, then for each block ∈B D( ) there is a uniquely determined cover X H( , )B B of
B such that the following statements hold.

(a) For every block ∈B D( ) , the triple B X H( , , )B B is a K‐configuration, a C‐configuration,
or a BC‐configuration.

(b) The digraphs HB with ∈B D( ) are pairwise disjoint and ⋃ ∈H H= B D
B

( ) .
(c) For each vertex ∈v V D( ) it holds ⋃ ∈ ∈X X=v B D v V B v

B
( ), ( ) .

Theorem 15. A connected digraph D is not DP‐degree‐colorable if and only if for every
block B of D one of the following cases occurs:

(a) B is a directed cycle of length ≥2.
(b) B is a bidirected cycle of length ≥3.
(c) B is a bidirected complete graph.

Finally, we deduce a Brooks‐type theorem for DP‐colorings of digraphs. For undirected
graphs, the theorem was proven by Bernshteyn et al [3].

Theorem 16. Let D be a connected digraph. Then, ≤χ D D D( ) max{Δ ( ), Δ ( )} + 1DP
+ −

and equality holds if and only if D is

(a) a directed cycle of length ≥2, or
(b) a bidirected cycle of length ≥3, or
(c) a bidirected complete graph.

Proof. As mentioned earlier, ≤χ D D D( ) max{Δ ( ), Δ ( )} + 1DP
+ − is always true.

Moreover, if D satisfies (a),(b), or (c), then χ D D D( ) = max{Δ( ) , Δ ( )} + 1DP
+ − , just take
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a C‐, BC‐, or K‐configuration. Now assume χ D D D( ) = max{Δ ( ), Δ ( )} + 1DP
+ − . Then,

there is a cover X H( , ) of D such that ≥X D D| max{Δ ( ), Δ ( )}v
+ − for all ∈v V D( ) and D is

not X H( , )‐colorable. Hence, D X H( , , ) is an uncolorable degree‐feasible configuration
and there is a spanning subdigraph H′ of H such that D X H( , , ′) is minimal uncolorable.
Then, X d v d v| | = ( ) = ( )v D D

+ − for all ∈v V G( ) (by Proposition 9(a)) and each block of D
satisfies (a), (b), or (c) (by Theorem 15). Thus, X D D| | = max{Δ ( ), Δ ( )}v

+ − for all ∈v V D( )

and we conclude that D has only one block and, therefore, satisfies (a), (b), or (c). This
completes the proof. □

In 1996, Johansson [12] proved that ( )χ G( ) =
G

G

Δ( )

log Δ( )2

 provided that the undirected graph

G contains no triangle. Regarding digraphs, Erdős [7] conjectured that ( )χ D( ) =
D

D

Δ( )

log Δ( )2

 for

digon‐free digraphs, whereas DΔ( ) denotes the maximum total degree of D. To the knowledge
of the authors, this conjecture is still open. Related to this question, Harutyunyan and Mohar
[10] proved the following. Given a digraph D, let ∈D d v d v v V DΔ̃( ) = max{ ( ) ( ) | ( )}+ − .

Theorem 17 (Harutyunyan and Mohar [10]). There is an absolute constant Δ1 such that
every digon‐free digraph D with ≥DΔ̃( ) Δ1 has ≤χ D e D( ) (1 − )Δ̃( )−13 .

Moreover, Bensmail et al [2] managed to extend the above theorem to list‐colorings of digon‐
free digraphs.

Theorem 18 (Bensmail et al [2]). There is an absolute constant Δ1 such that every digon‐
free digraph D with ≥DΔ̃( ) Δ1 has ≤ℓχ D e D( ) (1 − )Δ̃( )−18 .

Thus, it is a natural question to ask whether this theorem can be transferred to DP‐colorings
of digon‐free digraphs and the authors encourage the reader to try his luck.

Another problem that may be worth examining is the following. In [17], Ohba conjectured
that for graphs with few vertices compared with their chromatic number the chromatic number
and the list‐chromatic number coincide. This conjecture was recently proven by Noel et al in
[16].

Theorem 19 (Ohba’s Conjecture). For every graph G satisfying ≥χ G G( ) (| | − 1)/2, we
have ℓχ G χ G( ) = ( ).

In [2], a simple transformation is used to obtain the directed version of Ohba’s Conjecture
from the undirected case.

Theorem 20. For every digraph D satisfying ≥χ D D( ) (| | − 1)/2, we have

ℓχ D χ D( ) = ( ).

It is easy to see that Ohba’s Conjecture does not hold if we take DP‐colorings instead of
list‐colorings neither in the undirected nor in the directed case (just take C4, or the
bidirected C4, respectively). However, Bernshteyn et al [4] proved the following, sharp,
bound.
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Theorem 21. For ∈ n , let r n( ) denote the minimum ∈ r such that for every n‐vertex
graph G with ≥χ G r( ) , we have χ G χ G( ) = ( )DP . Then,

n r n n− ( ) = Θ( ).

In an earlier version of the present paper, the authors conjectured that it should be possible
to transfer the above theorem to DP‐colorings of directed graphs. Since then, we have managed
to find a way to achieve this by combining the ideas from [2] with a similar technique to the one
used in the proof of Theorem 3.

Theorem 22. Let D be a digraph and let V V V( , , …, )k1 2 be a partition of V D( ) such that
D V[ ]i contains no directed cycle for ∈i k{1, 2, …, }. Furthermore, let G be the complete
multipartite undirected graph with classes V V V, …, k1 2 . Then, ≤χ D χ G( ) ( )DP DP .

Proof. Let ℓχ G( ) =DP . Suppose that there is an ℓ‐cover X H( , ) of D such that X H( , )

contains no acyclic transversal. We define an ℓ‐cover X H( , )G G of G as follows. Let
X X=G , and let E H( )G be the set of all edges x xv w such that there are indices
∈i j k, {1, 2, …, } with i j< and vertices ∈ ∈v V w V,i j with ∈x Xv v, ∈x Xw w, and
∈x x A H( )v w . As ℓχ G( ) =DP , there is an independent transversal TG of X H( , )G G . As

X H( , ) contains no acyclic transversal, H T[ ]G contains a directed cycle C. Let
∈ ∩ ≠ ∅V v V D X C′ = { ( )| }v . Then, D V[ ′] contains a directed cycle, as well. Since Vi

is acyclic for all ∈i k{1, 2, …, }, this implies that there are indices i j< from k{1, 2, …, }

and vertices ∈ ∈v V w V,i j such that ∈vw A D V( [ ′]), ∩ ∈X T x V C= { } ( )v G v ,
∩ ∈X T x V C= { } ( )w G w , and ∈x x A H( )v w . Consequently, ∈x x E H T( [ ])v w G G and so TG

is not an independent transversal of X H( , )G G , a contradiction. This completes the
proof. □

Corollary 23. For ∈ n , let r n( ) denote the minimum ∈ r such that for every digraph
D with D n| | = and ≥χ D r( ) , we have χ D χ D( ) = ( )DP . Then,

n r n n− ( ) = Θ( ).

Proof. That n r n n− ( ) = ( ) follows from the fact that for each bidirected digraph D we
have χ D χ G D( ) = ( ( ))DP DP (by Corollary 4) and from Theorem 21. The fact that
n r n n− ( ) = Ω( ) can easily be deduced by combining Theorem 21 with Theorem 22. □
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