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Abstract

A graph G is called k-ordered if for every sequence of k distinct
vertices there is a cycle traversing these vertices in the given order.
In the present paper we consider two novel generalizations of this
concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered . We
prove the following results for a chordal graph G:

(a) G is (2k − 3)-connected if and only if it is k-vertex-edge-ordered
(k ≥ 3).

(b) G is (2k − 1)-connected if and only if it is strongly k-vertex-edge-
ordered (k ≥ 2).

(c) G is k-linked if and only if it is (2k − 1)-connected.
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2000 Mathematics Subject Classification: 05C38, 05C40.

1. Introduction and Results

All graphs considered in this paper are finite, undirected, and simple, i.e.,
without loops or multiple edges. For terminology not defined here we
refer to [2]. A graph is chordal if it contains no induced cycles other
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than triangles, and it is called k-linked if for every set of k distinct pairs
L = {(s0, t0), . . . , (sk−1, tk−1)} of vertices it contains k internally disjoint
paths P0, . . . , Pk−1 such that Pi links si to ti for all i ∈ {0, . . . , k − 1}.
We shall call the subgraph of G formed by the union of P0, . . . , Pk−1 an L-
linkage. Jung [5] and, independently, Larman and Mani [6] proved that for
every k there is an (minimal) f(k) such that every f(k)-connected graph is
k-linked. Bollobás and Thomason [1] showed that f(k) ≤ 22k. Recently, it
was proved by Thomas and Wollan [8] that f(k) ≤ 10k. Our second result,
Theorem 1.2 below, shows that for the special case of chordal graphs the
precise value of f(k) is 2k − 1.

A graph is called k-ordered if for every sequence (v0, . . . , vk−1) of k
distinct vertices there is a cycle of G that contains v0, . . . , vk−1 in the given
order. This concept was introduced by Ng and Schultz [7], and a survey of
results on k-ordered graphs is given in [4]. It is easy to see that being k-
linked implies being k-ordered. We generalize the concept of k-orderability
as follows. Let T = (a0, . . . , ak−1) be a sequence of k distinct vertices and/or
edges, and let V (T ) and E(T ) denote the sets of vertices and edges in T ,
respectively. Let W (T ) denote the set of all vertices that are either contained
in T or incident to an edge in T . A T -cycle is a cycle in G that contains
a0, . . . , ak−1 in the given order. The sequence T is said admissible if it
satisfies the following conditions.

(1) If an edge ai ∈ E(T ) is incident to a vertex aj ∈ V (T ), then |i − j| ≡ 1
(mod k).

(2) If two edges ai, aj ∈ E(T ) meet in a vertex x /∈ V (T ), then |i − j| ≡ 1
(mod k).

A graph is called k-vertex-edge-ordered if for every admissible sequence T =
(a0, . . . , ak−1) of k distinct vertices and/or edges there is a T -cycle.

Theorem 1.1. Let G be a chordal graph on at least 2k − 2 vertices with
k ≥ 3. Then the following two statements are equivalent:

(a) G is (2k − 3)-connected.

(b) G is k-vertex-edge-ordered.

Theorem 1.1 implies a conjecture of Faudree [4] for the special case of chordal
graphs.

We further generalize this concept. An orientation of an edge e = {u, v}
is a pair (u, v); u is called the tail and v the head. Let (a0, . . . , ak−1) be an



Ordered and Linked Chordal Graphs 369

admissible sequence of k distinct vertices and/or edges. An orientation of
the edges in this sequence is admissible if it satisfies the following conditions.

(3) If the vertex ai is the tail of the edge aj , then i ≡ j − 1 (mod k).

(4) If the vertex ai is the head of the edge aj , then i ≡ j + 1 (mod k).

(5) If two edges ai, aj ∈ E(T ) meet in a vertex x /∈ V (T ) and j ≡ i +
1 (mod k), then x is the head of ai and the tail of aj .

A graph is called strongly k-vertex-edge-ordered if for every admissible se-
quence T = (a0, . . . , ak−1) of k distinct vertices and/or edges and every
admissible orientation of the edges of this sequence there is a cycle C of G
that can be traversed such that a0, . . . , ak−1 are encountered in the given
order and every edge is traversed according to its orientation, i.e., from tail
to head. Clearly, C is a T -cycle.

Theorem 1.2. Let G be a chordal graph on at least 2k vertices. Then the
following three statements are equivalent:

(a) G is (2k − 1)-connected.

(b) G is k-linked.

(c) G is strongly k-vertex-edge-ordered.

2. Proofs

Let G be a graph and let x be a vertex of G. Then N(x) denotes the set
of all vertices adjacent to x in G. A vertex x of a graph G is simplicial
if the subgraph G[N(x)] of G induced by N(x) is complete. The following
Proposition 2.1 is a consequence of a well-known theorem of Dirac [3].

Proposition 2.1. Let G be a k-connected chordal graph. Then the following
hold:

(a) There is a simplicial vertex x ∈ V (G), and G − x is chordal.

(b) If G is not complete and x is a simplicial vertex of G, then G − x is
k-connected.

The following Proposition 2.2 will be frequently used in the proof of Theorem
1.1. Its easy proof is left to the reader.

Proposition 2.2. Let G be a graph, T = (a0, . . . , ak−1) be an admissible se-
quence of distinct vertices and/or edges, X ⊆ V (G), and J ⊆ {0, . . . , k−1}.
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If for every vertex x ∈ X there is a j ∈ J such that either x = aj or x is
incident to the edge aj , then |X| ≤ 2|J |.

Proof of Theorem 1.1. To show that (a) implies (b), we apply induction
on |G|. Let T = (a0, . . . , ak−1) be an admissible sequence. If G is complete
the statement of the theorem is clearly true. Hence we may assume that G
is not complete and, therefore, |G| ≥ 2k − 1. By Proposition 2.1, there is
a simplicial vertex u ∈ V (G) and G − u is (2k − 3)-connected and chordal.
Note that |N(u)| ≥ 2k− 3. Let H = G[N(u)∪{u}]. Clearly, H is complete.
Consequently, the assertion is true if W (T ) ⊆ V (H). So, we henceforth
assume that

W (T ) 6⊆ V (H).(1)

If u /∈ W (T ), then we apply the induction hypothesis to G − u, and we
are done. If u ∈ W (T ), then we construct an admissible sequence T ′ =
(a′0, . . . , a

′
k−1

) of vertices and/or edges of G − u. Hence, by the induction
hypothesis, there is a T ′-cycle C ′ in G − u. It is easy to see that C ′ can be
extended to a T -cycle C in G. For the construction of T ′ we distinguish the
following cases.

Case 1. u ∈ V (T ), say u = a0.

Case 1.1. u is incident to an edge in T , say a1.

By Proposition 2.2 and (1), N(u) \ W (T ) 6= ∅. Let v ∈ N(u) be the end
of a1 and w ∈ N(u) \ W (T ). Put a′

0 = w, a′1 = {v, w}, and a′i = ai for
i ∈ {2, . . . , k− 2}. If ak−1 is an edge incident to u, then let x ∈ N(u) be the
end of ak−1 and put a′k−1

= {w, x}. Otherwise, let a′
k−1

= ak−1.

Case 1.2. u is not incident with any edge in T .

If |N(u) \ W (T )| ≥ 2, then let v, w ∈ N(u) \ W (T ), and put a′
0 = {v, w}

and a′i = ai for all i ∈ {1, . . . , k − 1}. If |N(u) \ W (T )| ≤ 1, then there is
a vertex v ∈ N(u) such that either v = aj or v is incident to the edge aj

and to no other edge in T where j ∈ {1, k − 1}. If not, then all vertices
but at most one in N(u) are either in V (T ) \ {a0, a1, ak−1} or incident to an
edge in E(T ) \ {a1, ak−1}. By Proposition 2.2 this implies that |N(u)|− 1 ≤
2(k − 3) < 2k − 4, contradicting |N(u)| ≥ 2k − 3. W.l.o.g., we may assume
that j = 1. If |N(u) \ W (T )| = 1, then let w ∈ N(u) \ W (T ) and put
a′0 = {v, w} and a′i = ai for all i ∈ {1, . . . , k − 1}. If |N(u) \ W (T )| = 0,
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then a1 is an edge. If not, then a1 = v and therefore, by Proposition 2.2,
W (T ) = N(u) ∪ {u}, contradicting (1). In a similar way it can be shown
that there is a vertex w ∈ N(u) \ {v} such that either w = ak−1 or w is
incident to the edge ak−1 and to no other edge in T . Put a′

0 = {v, w} and
a′i = ai for all i ∈ {1, . . . , k − 1}.

Case 2. u /∈ V (T ).

Case 2.1. u is incident to two edges in T , say to a0, ak − 1.

Let v ∈ N(u) be the end of a0, and w ∈ N(u) be the end of ak−1. If
|N(u) \ W (T )| ≥ 1, then let x ∈ N(u) \ W (T ), and put a′

0 = {v, x}, a′k−1
=

{x,w}, and a′i = ai for i ∈ {1, . . . , k − 2}. If |N(u) \ W (T )| = 0, then, by
Proposition 2.2, v 6= a1 and w 6= ak−2. Put a′0 = v, a′k−1

= {v, w} and
a′i = ai for i ∈ {1, . . . , k − 2}.

Case 2.2. u is incident to exactly one edge in T , say to a0.

Let v ∈ N(u) be the end of a0. If |N(u) \ W (T )| ≥ 1, then let w ∈
N(u) \ W (T ) and put a′

0 = {v, w} and a′i = ai for i ∈ {1, . . . , k − 1}. If
|N(u)\W (T )| = 0, then it follows by Proposition 2.2 and (1) that v 6= a1 and
v 6= ak−1. By the essentially the same arguments as in Case 1.2 it follows,
that if v /∈ V (T ) and v is not incident to any edge in E(T )\{a0}, then there
is a vertex w ∈ N(u) \ {v} such that either w = aj or w is incident to the
edge aj and to no other edge in T where j ∈ {1, k − 1}. We may assume
w.l.o.g. that j = 1. Put a′

0 = {v, w} and a′i = ai for i ∈ {1, . . . , k − 1}. If v
is incident to an edge in E(T ) \ {a0}, say a1, then there is a vertex w such
that either w = ak−1 or w is incident to the edge ak−1 and to no other edge
in T . Put a′0 = {v, w} and a′i = ai for i ∈ {1, . . . , k − 1}.

Next, we prove that (b) implies (a). It is clear that every k-vertex-edge-
ordered graph is connected. Let G be a connected chordal graph on at least
2k − 2 vertices that is not (2k − 3)-connected. G has a minimal separator
S ⊆ V (G) with |S| ≤ 2k − 4. Let G1, G2 be two distinct components of
G − S. Since G is chordal, the subgraph H of G induced by S is complete.
Let Z = {a1, . . . , ar−2} be a collection of vertices and/or edges in H such
that Z is a perfect matching of H if |H| is even and a maximal matching
plus the (only) unsaturated vertex, otherwise. Note that r ≤ k. Let T =
(a0, . . . , ar−1) where a0 ∈ V (G1) and ar−1 ∈ V (G2). It is not hard to see
that there is no T -cycle in G. Hence every k-vertex-edge-ordered chordal
graph with at least 2k − 2 vertices is (2k − 3)-connected.
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Proof of Theorem 1.2. To show that (a) implies (b), we apply induction on
|G|. Since G is (2k−1)-connected, |G| ≥ 2k. If |G| = 2k, then G is complete,
and hence it is k-linked. If |G| > 2k, then it follows from Proposition 2.1
that G has a simplicial vertex x and G−x is (2k−1)-connected and chordal.
Let L = {(s0, t0), . . . , (sk−1, tk−1)} be a set of k distinct pairs of vertices of
G. Let l denote the number of pairs in L containing x. If l = 0, we apply
the induction hypothesis to G − x, and we are done. We may therefore
assume that l ≥ 1, say x = s0 = . . . = sl−1. Let A = {t0, . . . , tl−1}, and
suppose that A′ = {t0, . . . , tm−1} = A∩N(x). If there is a ti ∈ A such that
ti = x, then suppose that i = l − 1. Consequently, A′′ = A \ (A′ ∪ {x}) =
{tm, . . . , tn−1} where n = l − 1 if x = tl−1 and n = l, otherwise. Since
|N(x)| ≥ 2k − 1, |N(x) \ (A′ ∪ {sl, . . . , sk−1, tl, . . . , tk−1}| ≥ 2k − 1 − m −
2(k−l) = 2l−m−1 ≥ l−m. Consequently, there is a subset B ⊆ N(x)\(A′∪
{sl, . . . , sk−1, tl, . . . , tk−1} such that |B| ≥ l − m. Let B = {ym, . . . , yn−1},
and let B′ = A′ ∪ B. It follows from the induction hypothesis, that G − x
contains pairwise disjoint paths Q0, . . . , Qn−1, Pl, . . . , Pk−1 such that Qi is
the trivial path consisting of ti for i ∈ {0, . . . ,m − 1}, Qi links yi to ti
for i ∈ {m, . . . , n − 1}, and Pi links si to ti for i ∈ {l, . . . , k − 1}. For
i ∈ {0, . . . , n − 1} let Pi be the path obtained from Qi by adding the edge
{yi, x}. If tl−1 = x, let Pl−1 be the trivial path consisting of x. Obviously,
the paths P0, . . . , Pk−1 form the desired L-linkage in G.

Next, we prove that (b) implies (c). Let G be k-linked and let T =
(a0, . . . , ak−1) be an admissible sequence together with an admissible orien-
tation of the edges. A vertex in V (T ) is said to be isolated if it is not incident
with any edge in E(T ). Let M denote the set of all isolated vertices in V (T ),
and let T ′ = (ai0 , . . . , air−1

) be the subsequence of T obtained by deleting
all elements ai ∈ V (T ) \ M . For e ∈ E(T ) let s(e) and t(e) denote the
head and the tail of e, respectively, and set s(x) = t(x) = x for all x ∈ M .
Let L = {(s0, t0), . . . , (sr−1, tr−1)} where sj = s(aij ) for 0 ≤ j ≤ r − 1,
tj = t(aij+1

) for 0 ≤ j ≤ r − 2, and tr−1 = t(ai0). Since G is k-linked there
is an L-linkage, and it is not hard to see that the union of an L-linkage and
E(T ) forms the desired cycle.

Eventually, we prove that (c) implies (a) It is clear that every strongly k-
vertex-edge-ordered graph is connected. Let G be a connected chordal graph
on at least 2k vertices that is not (2k − 1)-connected. G has a minimal
separator S ⊆ V (G) with r = |S| ≤ 2k − 2. Let G1, G2 be two distinct
components of G − S. Since G is chordal, the subgraph H of G induced
by S is complete. Let Q = v1, . . . , vr be a Hamiltonian path of H, and let
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u1 and u2 be vertices of G1 and G2, respectively, such that u1 is adjacent
to v1 and u2 is adjacent to vr in G. For 1 ≤ i ≤ b r−1

2
c, let ei denote

the oriented edge (v2i, v2i+1). Furthermore, let e0 and eb r−1

2
c+1

denote the

oriented edges (u1, v1) and (vr, u2), respectively. It is not hard to see, that
G does not contain a cycle that can be traversed such that e0, . . . , eb r−1

2
c+1

are encountered in the given order and every edge is traversed according
to its orientation. Since b r−1

2
c + 1 ≤ k, this shows that G is not strongly

k-vertex-edge-ordered. Hence every strongly k-vertex-edge-ordered chordal
graph is (2k − 1)-connected.
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