6,800 research outputs found
Social geology — integrating sustainability concepts into Earth sciences
publisher: Elsevier articletitle: Social geology — integrating sustainability concepts into Earth sciences journaltitle: Proceedings of the Geologists' Association articlelink: http://dx.doi.org/10.1016/j.pgeola.2017.01.002 content_type: article copyright: Crown Copyright © 2017 Published by Elsevier Ltd on behalf of The Geologists' Association. All rights reserved.Most geologists would argue that geoscientific knowledge, experience, and guidance is critical for addressing many of society's most acute environmental challenges, yet few geologists are directly engaged in current discourses around sustainable development. That is surprising given that several attributes make modern geoscience well placed to make critical contributions to contemporary sustainability thinking. Here, we argue that if geoscientists are to make our know-how relevant to sustainability science, two aspects seem clear. Firstly, the geoscience community needs to substantially broaden its constituency, not only forging interdisciplinary links with other environmental disciplines but also drawing from the human and behavioral sciences. Secondly, the principles and practices of ‘sustainability’ need to be explicitly integrated into geoscience education, training and continued professional development
Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k_T
We define and study the properties of generalized beam functions (BFs) and
fragmenting jet functions (FJFs), which are fully-unintegrated parton
distribution functions (PDFs) and fragmentation functions (FFs) for
perturbative k_T. We calculate at one loop the coefficients for matching them
onto standard PDFs and FFs, correcting previous results for the BFs in the
literature. Technical subtleties when measuring transverse momentum in
dimensional regularization are clarified, and this enables us to renormalize in
momentum space. Generalized BFs describe the distribution in the full
four-momentum k_mu of a colliding parton taken out of an initial-state hadron,
and therefore characterize the collinear initial-state radiation. We illustrate
their importance through a factorization theorem for pp -> l^+ l^- + 0 jets,
where the transverse momentum of the lepton pair is measured. Generalized FJFs
are relevant for the analysis of semi-inclusive processes where the full
momentum of a hadron, fragmenting from a jet with constrained invariant mass,
is measured. Their significance is shown for the example of e^+ e^- -> dijet+h,
where the perpendicular momentum of the fragmenting hadron with respect to the
thrust axis is measured.Comment: Journal versio
The Quark Beam Function at NNLL
In hard collisions at a hadron collider the most appropriate description of
the initial state depends on what is measured in the final state. Parton
distribution functions (PDFs) evolved to the hard collision scale Q are
appropriate for inclusive observables, but not for measurements with a specific
number of hard jets, leptons, and photons. Here the incoming protons are probed
and lose their identity to an incoming jet at a scale \mu_B << Q, and the
initial state is described by universal beam functions. We discuss the
field-theoretic treatment of beam functions, and show that the beam function
has the same RG evolution as the jet function to all orders in perturbation
theory. In contrast to PDF evolution, the beam function evolution does not mix
quarks and gluons and changes the virtuality of the colliding parton at fixed
momentum fraction. At \mu_B, the incoming jet can be described perturbatively,
and we give a detailed derivation of the one-loop matching of the quark beam
function onto quark and gluon PDFs. We compute the associated NLO Wilson
coefficients and explicitly verify the cancellation of IR singularities. As an
application, we give an expression for the next-to-next-to-leading logarithmic
order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos
fixed; v3: journal versio
Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation
We consider the large-sparse symmetric linear systems of equations that arise in the solution of weak constraint four-dimensional variational data assimilation, a method of high interest for numerical weather prediction. These systems can be written as saddle point systems with a block structure but block eliminations can be performed to reduce them to saddle point systems with a block structure, or further to symmetric positive definite systems. In this paper, we analyse how sensitive the spectra of these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to confirm the theoretical analysis and bounds
Parton Fragmentation within an Identified Jet at NNLL
The fragmentation of a light parton i to a jet containing a light energetic
hadron h, where the momentum fraction of this hadron as well as the invariant
mass of the jet is measured, is described by "fragmenting jet functions". We
calculate the one-loop matching coefficients J_{ij} that relate the fragmenting
jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h
for quark and gluon jets. We perform this calculation using various IR
regulators and show explicitly how the IR divergences cancel in the matching.
We derive the relationship between the coefficients J_{ij} and the quark and
gluon jet functions. This provides a cross-check of our results. As an
application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance
where we measure the momentum fraction of the pi+ and restrict to the dijet
limit by imposing a cut on thrust T. In our analysis we sum the logarithms of
tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy
(NNLL). We find that including contributions up to NNLL (or NLO) can have a
large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio
Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.
This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Two effects, jet broadening and gluon bremsstrahlung induced by the
propagation of a highly energetic quark in dense QCD matter, are reconsidered
from effective theory point of view. We modify the standard Soft Collinear
Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed
to implement the interactions between the medium and the collinear fields. We
derive the Feynman rules for this Lagrangian and show that it is invariant
under soft and collinear gauge transformations. We find that the newly
constructed theory SCET recovers exactly the general result for the
transverse momentum broadening of jets. In the limit where the radiated gluons
are significantly less energetic than the parent quark, we obtain a jet
energy-loss kernel identical to the one discussed in the reaction operator
approach to parton propagation in matter. In the framework of SCET we
present results for the fully-differential bremsstrahlung spectrum for both the
incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the
soft-gluon approximation. Gauge invariance of the physics results is
demonstrated explicitly by performing the calculations in both the light-cone
and covariant gauges. We also show how the process-dependent
medium-induced radiative corrections factorize from the jet production cross
section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS.
OBJECTIVES: A recent individual patient data (IPD) meta-analysis suggested that patients with moderate or severe acute respiratory distress syndrome (ARDS) benefit from higher positive end-expiratory pressure (PEEP) ventilation strategies. However, thresholds for continuous variables (eg, hypoxaemia) are often arbitrary and linearity assumptions in regression approaches may not hold; the multivariable fractional polynomial interaction (MFPI) approach can address both problems. The objective of this study was to apply the MFPI approach to investigate interactions between four continuous patient baseline variables and higher versus lower PEEP on clinical outcomes. SETTING: Pooled data from three randomised trials in intensive care identified by a systematic review. PARTICIPANTS: 2299 patients with acute lung injury requiring mechanical ventilation. INTERVENTIONS: Higher (N=1136) versus lower PEEP (N=1163) ventilation strategy. OUTCOME MEASURES: Prespecified outcomes included mortality, time to death and time-to-unassisted breathing. We examined the following continuous baseline characteristics as potential effect modifiers using MFPI: PaO2/FiO2 (arterial partial oxygen pressure/ fraction of inspired oxygen), oxygenation index, respiratory system compliance (tidal volume/(inspiratory plateau pressure-PEEP)) and body mass index (BMI). RESULTS: We found that for patients with PaO2/FiO2 below 150 mm Hg, but above 100 mm Hg or an oxygenation index above 12 (moderate ARDS), higher PEEP reduces hospital mortality, but the beneficial effect appears to level off for patients with very severe ARDS. Patients with mild ARDS (PaO2/FiO2 above 200 mm Hg or an oxygenation index below 10) do not seem to benefit from higher PEEP and might even be harmed. For patients with a respiratory system compliance above 40 mL/cm H2O or patients with a BMI above 35 kg/m(2), we found a trend towards reduced mortality with higher PEEP, but there is very weak statistical confidence in these findings. CONCLUSIONS: MFPI analyses suggest a nonlinear effect modification of higher PEEP ventilation by PaO2/FiO2 and oxygenation index with reduced mortality for some patients suffering from moderate ARDS. STUDY REGISTRATION NUMBER: CRD42012003129
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
- …