1,255 research outputs found
Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review
Blood-feeding arthropods support a diverse array of symbiotic microbes, some of which facilitate host growth and development whereas others are detrimental to vector-borne pathogens. We found a common core constituency among the microbiota of 16 different arthropod blood-sucking disease vectors, including Bacillaceae, Rickettsiaceae, Anaplasmataceae, Sphingomonadaceae, Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Staphylococcaceae. By comparing 21 genomes of common bacterial symbionts in blood-feeding vectors versus non-blooding insects, we found that certain enteric bacteria benefit their hosts by upregulating numerous genes coding for essential nutrients. Bacteria of blood-sucking vectors expressed significantly more genes (p \u3c 0.001) coding for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (p \u3c 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed few gene families coding for these nutrient categories. We also discuss specific midgut bacteria essential for the normal development of pathogens (e.g., Leishmania) versus others that were detrimental (e.g., bacterial toxins in mosquitoes lethal to Plasmodium spp.)
Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes
<p>Abstract</p> <p>Background</p> <p>Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. <it>Staphylococcus aureus </it>is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen.</p> <p>Results</p> <p>The impact of <it>S. aureus </it>soluble products in biofilm-conditioned medium (BCM) or in planktonic-conditioned medium (PCM) on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic <it>S. aureus </it>was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, <it>S. aureus </it>biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms.</p> <p>Conclusions</p> <p>Collectively the results indicate that <it>S. aureus </it>biofilms induce a distinct inflammatory response compared to their planktonic counterparts. The differential gene expression and production of inflammatory cytokines by biofilm and planktonic cultures in keratinocytes could have implications for the formation and persistence of chronic wounds. The formation of a biofilm should be considered in any study investigating host response to bacteria.</p
Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise
Background It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise
Recommended from our members
Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes.
Fungi play a key role cycling nutrients in forest ecosystems, but the mechanisms remain uncertain. To clarify the enzymatic processes involved in wood decomposition, the metatranscriptomics and metaproteomics of extensively decayed lodgepole pine were examined by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Following de novo metatranscriptome assembly, 52,011 contigs were searched for functional domains and homology to database entries. Contigs similar to basidiomycete transcripts dominated, and many of these were most closely related to ligninolytic white rot fungi or cellulolytic brown rot fungi. A diverse array of carbohydrate-active enzymes (CAZymes) representing a total of 132 families or subfamilies were identified. Among these were 672 glycoside hydrolases, including highly expressed cellulases or hemicellulases. The CAZymes also included 162 predicted redox enzymes classified within auxiliary activity (AA) families. Eighteen of these were manganese peroxidases, which are key components of ligninolytic white rot fungi. The expression of other redox enzymes supported the working of hydroquinone reduction cycles capable of generating reactive hydroxyl radicals. These have been implicated as diffusible oxidants responsible for cellulose depolymerization by brown rot fungi. Thus, enzyme diversity and the coexistence of brown and white rot fungi suggest complex interactions of fungal species and degradative strategies during the decay of lodgepole pine.IMPORTANCE The deconstruction of recalcitrant woody substrates is a central component of carbon cycling and forest health. Laboratory investigations have contributed substantially toward understanding the mechanisms employed by model wood decay fungi, but few studies have examined the physiological processes in natural environments. Herein, we identify the functional genes present in field samples of extensively decayed lodgepole pine (Pinus contorta), a major species distributed throughout the North American Rocky Mountains. The classified transcripts and proteins revealed a diverse array of oxidative and hydrolytic enzymes involved in the degradation of lignocellulose. The evidence also strongly supports simultaneous attack by fungal species employing different enzymatic strategies
Nanoparticle metrology of silica colloids and super-resolution studies using the ADOTA fluorophore
We describe how a new fluorescent dye, methyl ADOTA (N-methyl-azadioxatriangulenium tetrafluoroborate), is an improvement on dyes reported previously for measuring silica nanoparticle size in sols using the decay of fluorescence anisotropy. Me(thyl)-ADOTA possesses the unusual combination of having a red emission and a long fluorescence lifetime of ~ 20 ns, leaving it better-placed to reveal particle sizes at the upper end of the 1-10 nm measurement range. For stable LUDOX colloids, Me-ADOTA is shown to offer higher measurement precision in ≤ 1/30th of the measurement time required for dyes previously used. In measurement times of only ~ 20 mins nanoparticle radii for LUDOX SM-AS, AM and AS-40 of 4.6 ± 0.3 nm, 5.9 ± 0.2 nm and 11.1 ± 1.1 nm, are in good agreement with two of the manufacturer’s values of 3.5 nm, 6 nm and 11 nm respectively. Unlike the Si-ADOTA (N-(4-(triethoxysilylethyl)urea-phenyl-) ADOTA tetrafluoroborate) derivative containing a reactive trimetoxysilane group, Me-ADOTA is shown to not induce aggregation of colloidal silica. Measurements on nanoparticles growing in an acidic silica hydrogel at pH 0.94, prior to the gel time of ~ 50 hr, reveals an average nanoparticle size up to ~ 6.3 nm, significantly larger than the 4.5 nm reported previously. The difference is most certainly due to the longer fluorescence lifetime of Me-ADOTA (~ 20 ns) revealing the presence of larger particles. Studies of growing silica clusters in an alcogel of tetraethyl orthosilicate (TEOS) were able to resolve a monotonically increasing average radius of 1.42 ± 0.10 nm to 1.81 ± 0.14 nm over a period of 48 hr. We have also assessed a carboxylic acid derivative of ADOTA (N-(3-carboxypropylene)-ADOTA tetrafluoroborate - Acid-ADOTA) using dSTORM super-resolution microscopy. Although demonstrating high photochemical stability and blinking, its lower brightness and relative propensity to aggregate limits Acid-ADOTA’s use for dSTORM
Meteorological influences on respirable fragment release from Chinese elm pollen
Exposure to airborne pollen from certain plants can cause allergic disease, leading to acute respiratory symptoms. Whole pollen grains, 15–90 μ m-sized particles, provoke the upper respiratory symptoms of rhinitis (hay fever), while smaller pollen fragments capable of depositing in the lower respiratory tract have been proposed as the trigger for asthma. In order to understand factors leading to pollen release and fragmentation we have examined the rupture of Chinese elm pollen under controlled laboratory conditions and in the outdoor atmosphere. Within 30 minutes after immersion in water, 70% of fresh Chinese pollen ruptures, rapidly expelling cytoplasm. Chinese elm flowers, placed in a controlled atmosphere chamber, emitted pollen and pollen debris after a sequential treatment of 98% relative humidity followed by drying and a gentle disturbance. Immunologic assays of antigenic proteins specific to elm pollens revealed that fine particulate material (D p < 2 μ m) collected from the chamber contained elm pollen antigens. In a temporal study of the outdoor urban atmosphere during the Chinese elm bloom season of 2004, peak concentrations of pollen and fine pollen fragments occurred at the beginning of the season when nocturnal relative humidity (RH) exceeded 90%. Following later periods of hot dry weather, pollen counts decreased to zero. The Chinese elm pollen fragments also decreased during the hot weather, but later displayed additional peaks following periods of more moderate RH and temperature, indicating that pollen counts underestimate total atmospheric pollen allergen concentrations. Pollen fragments thus increase the biogenic load in the atmosphere in a form that is no longer recognizable as pollen and, therefore, is not amenable to microscopic analysis. This raises the possibility of exposure of sensitive individuals to pollen allergens in the form of fine particles that can penetrate into the lower airways and pose potentially severe health risks.<br /
Epidemiology of recreational exposure to freshwater cyanobacteria – an international prospective cohort study
BACKGROUND: Case studies and anecdotal reports have documented a range of acute illnesses associated with exposure to cyanobacteria and their toxins in recreational waters. The epidemiological data to date are limited; we sought to improve on the design of some previously conducted studies in order to facilitate revision and refinement of guidelines for exposure to cyanobacteria in recreational waters. METHODS: A prospective cohort study was conducted to investigate the incidence of acute symptoms in individuals exposed, through recreational activities, to low (cell surface area <2.4 mm(2)/mL), medium (2.4–12.0 mm(2)/mL) and high (>12.0 mm(2)/mL) levels of cyanobacteria in lakes and rivers in southeast Queensland, the central coast area of New South Wales, and northeast and central Florida. Multivariable logistic regression analyses were employed; models adjusted for region, age, smoking, prior history of asthma, hay fever or skin disease (eczema or dermatitis) and clustering by household. RESULTS: Of individuals approached, 3,595 met the eligibility criteria, 3,193 (89%) agreed to participate and 1,331 (37%) completed both the questionnaire and follow-up interview. Respiratory symptoms were 2.1 (95%CI: 1.1–4.0) times more likely to be reported by subjects exposed to high levels of cyanobacteria than by those exposed to low levels. Similarly, when grouping all reported symptoms, individuals exposed to high levels of cyanobacteria were 1.7 (95%CI: 1.0–2.8) times more likely to report symptoms than their low-level cyanobacteria-exposed counterparts. CONCLUSION: A significant increase in reporting of minor self-limiting symptoms, particularly respiratory symptoms, was associated with exposure to higher levels of cyanobacteria of mixed genera. We suggest that exposure to cyanobacteria based on total cell surface area above 12 mm(2)/mL could result in increased incidence of symptoms. The potential for severe, life-threatening cyanobacteria-related illness is likely to be greater in recreational waters that have significant levels of cyanobacterial toxins, so future epidemiological investigations should be directed towards recreational exposure to cyanotoxins
\u3cem\u3eBorrelia burgdorferi\u3c/em\u3e SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete
The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations
- …