1,106 research outputs found

    Pulsar magnetospheres: numerical simulations of large amplitude electron-positron oscillations

    Get PDF
    The numerical simulation of non-linear electron-positron oscillations is reported, showing the evolution of the electric field and the plasma number density for large amplitude disturbances. Sharp density gradients and changes in the oscillation frequency are demonstrated, and a new analytical framework is presented to illustrate these phenomena, particularly in the context of pulsar plasmas

    Lymphatic expression of CLEVER-1 in breast cancer and its relationship with lymph node metastasis

    Get PDF
    BACKGROUND Mechanisms regulating breast cancer lymph node metastasis are unclear. Staining of CLEVER-1 (common lymphatic endothelial and vascular endothelial receptor-1) in human breast tumors was used, along with in vitro techniques, to assess involvement in the metastatic process. METHODS 148 sections of primary invasive breast cancers, with 10 yr follow-up, were stained with anti-CLEVER-1. Leukocyte infiltration was assessed, along with involvement of specific subpopulations by staining with CD83 (mature dendritic cells, mDC), CD209 (immature DC, iDC) and CD68 (macrophage, Mϕ). In vitro expression of CLEVER-1 on lymphatic (LEC) and blood endothelial cells (BEC) was examined by flow cytometry. RESULTS In vitro results showed that although both endothelial cell types express CLEVER-1, surface expression was only evident on LEC. In tumour sections CLEVER-1 was expressed in blood vessels (BV, 61.4% of samples), lymphatic vessels (LV, 18.2% of samples) and in Mϕ/DCs (82.4% of samples). However, only CLEVER-1 expression in LV was associated with LN metastasis (p = 0.027) and with Mϕ indices (p = 0.021). Although LV CLEVER-1 was associated with LN positivity there was no significant correlation with recurrence or overall survival, BV CLEVER-1 expression was, however, associated with increased risk of recurrence (p = 0.049). The density of inflammatory infiltrate correlated with CLEVER-1 expression in BV (p < 0.001) and LV (p = 0.004). CONCLUSIONS The associations between CLEVER-1 expression on endothelial vessels and macrophage/leukocyte infiltration is suggestive of its regulation by inflammatory conditions in breast cancer, most likely by macrophage-associated cytokines. Its upregulation on LV, related surface expression, and association with LN metastasis suggest that it may be an important mediator of tumor cell metastasis to LN

    Improved Estimates of Cosmological Perturbations

    Full text link
    We recently derived exact solutions for the scalar, vector and tensor mode functions of a single, minimally coupled scalar plus gravity in an arbitrary homogeneous and isotropic background. These solutions are applied to obtain improved estimates for the primordial scalar and tensor power spectra of anisotropies in the cosmic microwave background.Comment: 31 pages, 4 figures, LaTeX 2epsilon, this version corrects an embarrasing mistake (in the published version) for the parameter q_C. Affected eqns are 105, 109-110, 124, 148-153 and 155-15

    A note on first-order projections and games

    Get PDF
    We show how the fact that there is a first-order projection from the problem TC (transitive closure) to some other problem Ω\Omega enables us to automatically deduce that a natural game problem, LG(Ω)\mathcal{LG}(\Omega), whose instances are labelled instances of Ω\Omega, is complete for PSPACE (via log-space reductions). Our analysis is strongly dependent upon the reduction from TC to Ω\Omega being a logical projection in that it fails should the reduction be, for example, a log-space reduction or a quantifier-free first-order translation

    Energy-Momentum Tensor of Cosmological Fluctuations during Inflation

    Full text link
    We study the renormalized energy-momentum tensor (EMT) of cosmological scalar fluctuations during the slow-rollover regime for chaotic inflation with a quadratic potential and find that it is characterized by a negative energy density which grows during slow-rollover. We also approach the back-reaction problem as a second-order calculation in perturbation theory finding no evidence that the back-reaction of cosmological fluctuations is a gauge artifact. In agreement with the results on the EMT, the average expansion rate is decreased by the back-reaction of cosmological fluctuations.Comment: 19 pages, no figures.An appendix and references added, conclusions unchanged, version accepted for publication in PR

    Collisional equilibrium, particle production and the inflationary universe

    Get PDF
    Particle production processes in the expanding universe are described within a simple kinetic model. The equilibrium conditions for a Maxwell-Boltzmann gas with variable particle number are investigated. We find that radiation and nonrelativistic matter may be in equilibrium at the same temperature provided the matter particles are created at a rate that is half the expansion rate. Using the fact that the creation of particles is dynamically equivalent to a nonvanishing bulk pressure we calculate the backreaction of this process on the cosmological dynamics. It turns out that the `adiabatic' creation of massive particles with an equilibrium distribution for the latter necessarily implies power-law inflation. Exponential inflation in this context is shown to become inconsistent with the second law of thermodynamics after a time interval of the order of the Hubble time.Comment: 19 pages, latex, no figures, to appear in Phys.Rev.

    Duality Invariance of Cosmological Perturbation Spectra

    Get PDF
    I show that cosmological perturbation spectra produced from quantum fluctuations in massless or self-interacting scalar fields during an inflationary era remain invariant under a two parameter family of transformations of the homogeneous background fields. This relates slow-roll inflation models to solutions which may be far from the usual slow-roll limit. For example, a scale-invariant spectrum of perturbations in a minimally coupled, massless field can be produced by an exponential expansion with a∝eHta\propto e^{Ht}, or by a collapsing universe with a∝(−t)2/3a\propto (-t)^{2/3}.Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and discussion expanded. Version to appear in Phys Rev

    Solving the Hamilton-Jacobi Equation for General Relativity

    Full text link
    We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparameterizations of the spatial coordinates (``gauge-invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the 3-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients, we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the 3-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.Comment: 13 pages, RevTeX, DAMTP-R93/2

    Damping of Tensor Modes in Cosmology

    Full text link
    An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6 % for wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7% for ΩMh2=0.1\Omega_Mh^2=0.1 to 9.0% for ΩMh2=0.15\Omega_Mh^2=0.15. An Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not negligible.Comment: 14 pages. The original version of this paper has been expanded to deal with perturbations of any wavelength. While for wavelengths short enough to enter the horizon during radiation dominance, temperature and polarization correlations are damped by 35.6%, at the longest wavelengths the damping is from 9.0% to 11%. An added Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law outside the horizon, even during neutrino decoupling. Some references are also adde
    • 

    corecore