11,311 research outputs found

    Exploring the challenges of implementing e-health: a protocol for an update of a systematic review of reviews.

    Get PDF
    There is great potential for e-health to deliver cost-effective, quality healthcare and spending on e-health systems by governments and healthcare systems is increasing worldwide. However, the literature often describes problematic and unsuccessful attempts to implement these new technologies into routine clinical practice. To understand and address the challenges of implementing e-health, a systematic review was conducted in 2009, which identified several conceptual barriers and facilitators to implementation. As technology is rapidly changing and new e-health solutions are constantly evolving to meet the needs of current practice, an update of this review is deemed necessary to understand current challenges to the implementation of e-health. This research aims to identify, summarise and synthesise currently available evidence, by undertaking a systematic review of reviews to explore the barriers and facilitators to implementing e-health across a range of healthcare settings

    Mind The Gap

    Full text link
    We discuss an optimisation criterion for the exact renormalisation group based on the inverse effective propagator, which displays a gap. We show that a simple extremisation of the gap stabilises the flow, leading to better convergence of approximate solutions towards the physical theory. This improves the reliability of truncations, most relevant for any high precision computation. These ideas are closely linked to the removal of a spurious scheme dependence and a minimum sensitivity condition. The issue of predictive power and a link to the Polchinski RG are discussed as well. We illustrate our findings by computing critical exponents for the Ising universality class.Comment: 6 pages, Talk presented at 2nd Conference on Exact Renormalization Group (ERG2000), Rome, Italy, 18-22 Sep 200

    A comparison of the domestic satellite communications forecast to the year 2000

    Get PDF
    The methodologies and results of three NASA-sponsored market demand assessment studies are presented and compared. Forecasts of future satellite addressable traffic (both trunking and customer premises services) were developed for the three main service categories of voice, data and video and subcategories thereof for the benchmark years of 1980, 1990 and 2000. The contractor results are presented on a service by service basis in two formats: equivalent 36 MHz transponders and basic transmission units (voice: half-voice circuits, data: megabits per second and video: video channels). It is shown that while considerable differences exist at the service category level, the overall forecasts by the two contractors are quite similar. ITT estimates the total potential satellite market to be 3594 transponders in the year 2000 with data service comprising 54 percent of this total. The WU outlook for the same time period is 2779 transponders with voice services accounting for 66 percent of the total

    The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    Get PDF
    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH<sub>4</sub>), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NO<sub>x</sub>) up to the year 2030 and implemented them in two global Chemistry Transport Models. The 'Current Legislation' (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a 'Maximum technically Feasible Reduction' (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NO<sub>x</sub>, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH<sub>4</sub>, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH<sub>4</sub> concentrations from 1990 to 2002. <P style='line-height: 20px;'> For the 'current legislation' case, both models indicate an increase of the annual average ozone levels in the Northern Hemisphere by 5ppbv, and up to 15ppbv over the Indian sub-continent, comparing the 2020s (2020-2030) with the 1990s (1990-2000). The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm<sup>-2</sup>. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the radiative forcing of ozone and methane to approximately -0.1 Wm<sup>-2</sup>. This can be compared to the 0.14-0.47 Wm<sup>-2</sup> increase of methane and ozone radiative forcings associated with the SRES scenarios. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO<sub>x</sub> and NMVOC result in lower ozone, but at the same time increase the lifetime of methane. Control of methane emissions appears an efficient option to reduce tropospheric ozone as well as radiative forcing

    Density distributions of superheavy nuclei

    Get PDF
    We employed the Skyrme-Hartree-Fock model to investigate the density distributions and their dependence on nuclear shapes and isospins in the superheavy mass region. Different Skyrme forces were used for the calculations with a special comparison to the experimental data in 208^{208}Pb. The ground-state deformations, nuclear radii, neutron skin thicknesses and α\alpha-decay energies were also calculated. Density distributions were discussed with the calculations of single-particle wavefunctions and shell fillings. Calculations show that deformations have considerable effects on the density distributions, with a detailed discussion on the 292^{292}120 nucleus. Earlier predictions of remarkably low central density are not supported when deformation is allowed for.Comment: 7 pages, 10 figure

    Crucial Dependence of ``Precarious'' and ``Autonomous'' phi^4s Upon the Normal-ordering Mass

    Get PDF
    Using the Gaussian wave-functional approach with the normal-ordering renormalization prescription, we show that for the (3+1)-dimensional massive lambda phi^4 theory, ``precarious'' and ``autonomous'' phi^4s can exist if and only if the normal-ordering mass is equal to the classical masses at the symmetrc and asymmetric vacua, respectively.Comment: 6 pages, no figures, Revtex file, accepted for publication in Mod. Phys. Lett.

    The influence of potassium on core and geodynamo evolution

    Get PDF
    We model the thermal evolution of the core and mantle using a parametrized convection scheme, and calculate the entropy available to drive the geodynamo as a function of time. The cooling of the core is controlled by the rate at which the mantle can remove heat. Rapid core cooling favours the operation of a geodynamo but creates an inner core that is too large; slower cooling reduces the inner core size but makes a geodynamo less likely to operate. Introducing potassium into the core retards inner core growth and provides an additional source of entropy. For our nominal model parameters, a core containing approximate to 400 ppm potassium satisfies the criteria of present-day inner core size, surface heat flux, mantle temperature and cooling rate, and positive core entropy production.We have identified three possibilities that may allow the criteria to be satisfied without potassium in the core. (1) The core thermal conductivity is less than half the generally accepted value of 50 W m(-1) K-1. (2) The core solidus and adiabat are significantly colder and shallower than results from shock experiments and ab initio simulations indicate. (3) The core heat flux has varied by no more than a factor of 2 over Earth history. All models we examined with the correct present-day inner core radius have an inner core age of < 1.5 Gyr; prior to this time the geodynamo was sustained by cooling and radioactive heat production within a completely liquid core
    corecore