12,028 research outputs found
NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos
We present preliminary diameters and albedos for 7,959 asteroids detected in
the first year of the NEOWISE Reactivation mission. 201 are near-Earth
asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these
objects have not been previously characterized using WISE or NEOWISE thermal
measurements. Diameters are determined to an accuracy of ~20% or better. If
good-quality H magnitudes are available, albedos can be determined to within
~40% or better.Comment: 42 pages, 5 figure
Patient reactions to a web-based cardiovascular risk calculator in type 2 diabetes: a qualitative study in primary care.
Use of risk calculators for specific diseases is increasing, with an underlying assumption that they promote risk reduction as users become better informed and motivated to take preventive action. Empirical data to support this are, however, sparse and contradictory
The Population of Tiny Near-Earth Objects Observed by NEOWISE
Only a very small fraction of the asteroid population at size scales
comparable to the object that exploded over Chelyabinsk, Russia has been
discovered to date, and physical properties are poorly characterized. We
present previously unreported detections of 106 close approaching near-Earth
objects (NEOs) by the Wide-field Infrared Survey Explorer mission's NEOWISE
project. These infrared observations constrain physical properties such as
diameter and albedo for these objects, many of which are found to be smaller
than 100 m. Because these objects are intrinsically faint, they were detected
by WISE during very close approaches to the Earth, often at large apparent
on-sky velocities. We observe a trend of increasing albedo with decreasing
size, but as this sample of NEOs was discovered by visible light surveys, it is
likely that selection biases against finding small, dark NEOs influence this
finding.Comment: Accepted to Ap
Validation of three geolocation strategies for health-facility attendees for research and public health surveillance in a rural setting in western Kenya.
Understanding the spatial distribution of disease is critical for effective disease control. Where formal address networks do not exist, tracking spatial patterns of clinical disease is difficult. Geolocation strategies were tested at rural health facilities in western Kenya. Methods included geocoding residence by head of compound, participatory mapping and recording the self-reported nearest landmark. Geocoding was able to locate 72·9% [95% confidence interval (CI) 67·7-77·6] of individuals to within 250 m of the true compound location. The participatory mapping exercise was able to correctly locate 82·0% of compounds (95% CI 78·9-84·8) to a 2 × 2·5 km area with a 500 m buffer. The self-reported nearest landmark was able to locate 78·1% (95% CI 73·8-82·1) of compounds to the correct catchment area. These strategies tested provide options for quickly obtaining spatial information on individuals presenting at health facilities
Design and Performance of Micro-Spec, an Ultra Compact High-Sensitivity Far-Infrared Spectrometer for SPICA
Micro-Spec (u-Spec) is a high-performance spectrometer working in the 250-700-micrometer wavelength range, whose modules use low-loss superconducting microstrip transmission lines on a single 4-inch-diameter silicon wafer. Creating the required phase delays in transmission lines rather than free space allows such an instrument to have, in principle, the performance of a meter-scale grating spectrometer. Such a dramatic size reduction enables classes of instruments for space that would be impossible with conventional technologies. This technology can dramatically enhance the long-wavelength capability of the space infrared telescope for cosmology and astrophysics SPICA. u-Spec is analogous to a grating spectrometer. The phase retardation generated by the reflection from the grating grooves is instead produced by propagation through a transmission line. The power received by a broadband antenna is progressively divided by binary microstrip power dividers, and the required phase delays are generated by different lengths of microstrip transmission lines. by arranging these outputs along a circular focal surface, the analog of a Rowland spectrometer can he created. The procedure to optimize the Micro-Spec design is based on the stigmatization and minimization of the light path function in a two-dimensional hounded region, which results in an optimized geometry arrangement with three stigmatic points. In addition, in order to optimize the overall efficiency of the instrument, the emitters are directed to the center of the focal surface. The electric field amplitude and phase as well as the power transmitted and absorbed throughout the region are analyzed. Measurements are planned in late summer to validate the designs
Increased gravitational force reveals the mechanical, resonant nature of physiological tremor
Human physiological hand tremor has a resonant component. Proof of this is that its frequency can be modified by adding mass. However, adding mass also increases the load which must be supported. The necessary force requires muscular contraction which will change motor output and is likely to increase limb stiffness. The increased stiffness will partly offset the effect of the increased mass and this can lead to the erroneous conclusion that factors other than resonance are involved in determining tremor frequency. Using a human centrifuge to increase head-to-foot gravitational field strength, we were able to control for the increased effort by increasing force without changing mass. This revealed that the peak frequency of human hand tremor is 99% predictable on the basis of a resonant mechanism. We ask what, if anything, the peak frequency of physiological tremor can reveal about the operation of the nervous system.This work was funded by a BBSRC Industry Interchange Award
to J.P.R.S. and R.F.R. C.J.O. was funded by BBSRC grant
BB/I00579X/1. C.A.V. was funded by A∗Midex (Aix-Marseille
Initiative of Excellence
The development and use of Actiphage® to detect viable mycobacteria from bovine tuberculosis and Johne’s disease-infected animals
Here, we describe the development of a method that exploits bacteriophage D29 as a lysis agent for efficient DNA extraction from low numbers of mycobacterial cells. This method (Actiphage®) used in combination with PCR achieved rapid and sensitive (LOD ≤ 10 cell ml−1) detection and identification of viable, pathogenic mycobacteria in blood samples within 6 h. We demonstrate that mycobacteriophage D29 can be used to detect a range of mycobacteria from clinical blood samples including both Mycobacterium tuberculosis complex and Mycobacterium avium subsp. paratuberculosis without the need for culture and confirms our earlier observations that a low‐level bacteraemia is associated with these infections in cattle. In a study of M. bovis‐infected cattle (n = 41), the sensitivity of the Actiphage® method was 95 % (95 % CI; 0.84–0.99) and specificity was 100 % (95% CI; 0.92–1). We further used Actiphage® to demonstrate viable Mycobacterium avium subsp. paratuberculosis is present in the blood of Johne’s infected cattle. This method provides a revolutionary new tool for the study of infections caused by these difficult to grow pathogens
Response of the Brazilian gravitational wave detector to signals from a black hole ringdown
It is assumed that a black hole can be disturbed in such a way that a
ringdown gravitational wave would be generated. This ringdown waveform is well
understood and is modelled as an exponentially damped sinusoid. In this work we
use this kind of waveform to study the performance of the SCHENBERG
gravitational wave detector. This first realistic simulation will help us to
develop strategies for the signal analysis of this Brazilian detector. We
calculated the signal-to-noise ratio as a function of frequency for the
simulated signals and obtained results that show that SCHENBERG is expected to
be sensitive enough to detect this kind of signal up to a distance of .Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution.
Submitted to Class. Quantum Gra
The C-Band All-Sky Survey (C-BASS): Constraining diffuse Galactic radio emission in the North Celestial Pole region
The C-Band All-Sky Survey C-BASS is a high-sensitivity all-sky radio survey
at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a
total intensity 4.7 GHz map of the North Celestial Pole (NCP) region of sky,
above declination +80 deg, which is limited by source confusion at a level of
~0.6 mK rms. We apply the template-fitting (cross-correlation) technique to
WMAP and Planck data, using the C-BASS map as the synchrotron template, to
investigate the contribution of diffuse foreground emission at frequencies
~20-40 GHz. We quantify the anomalous microwave emission (AME) that is
correlated with far-infrared dust emission. The AME amplitude does not change
significantly (<10%) when using the higher frequency C-BASS 4.7 GHz template
instead of the traditional Haslam 408 MHz map as a tracer of synchrotron
radiation. We measure template coefficients of and
K per unit when using the Haslam and C-BASS synchrotron templates,
respectively. The AME contributes K rms at 22.8 GHz and accounts
for ~60% of the total foreground emission. Our results suggest that a harder
(flatter spectrum) component of synchrotron emission is not dominant at
frequencies >5 GHz; the best-fitting synchrotron temperature spectral index is
from 4.7 to 22.8 GHz and from 22.8 to
44.1 GHz. Free-free emission is weak, contributing ~K rms (~7%) at 22.8
GHz. The best explanation for the AME is still electric dipole emission from
small spinning dust grains.Comment: 18 pages, 6 figures, version matches version accepted by MNRA
Refined model of incremental emplacement based on structural evidence from the granodioritic Newry igneous complex, Northern Ireland
Although many intrusions are now known to have been incrementally emplaced, the mechanisms through which this takes place are generally poorly understood. The Newry igneous complex was incrementally emplaced within the Southern Uplands-Down-Longford terrane of Northern Ireland during late Caledonian sinistral transtension. This study uses a variety of new and existing data and techniques to provide a fuller and firmer understanding of incremental emplacement than has previously been available, addressing both deep-crustal processes and those operating within the emplacement site. Host-rock orientations suggest that some of the accommodation space for the Newry igneous complex was generated due to pull-apart tectonics operating within the Southern Uplands-Down-Longford terrane. Local host-rock deflections, concentric igneous foliations, and concentric linear anisotropy of magnetic susceptibility (AMS)fabrics show that inflation due to magma overpressure also generated significant space. Strong AMS fabrics close to the boundaries of some magma pulses in turn suggest that inflation was accomplished by injection of individual magma pulses and was thus incremental. The dome-like orientations of mineral foliations within plutons and the truncation of steep local host-rock tracts by the Newry igneous complex imply that the complex consists of four laccolithic bodies. On a larger scale, it is suggested that the deep-seated Argyll and Newry lineaments represent faults that allowed magma generated at depth to ascend to the crustal level of the Southern Uplands-Down-Longford tract boundaries. It is also inferred that sinistral movement along the Argyll and Newry lineaments may have produced the releasing bend within the Southern Uplands-Down-Longford terrane. Higher in the crust, reduced confining pressure resulted in tectonic opening along this releasing bend. This local stress field induced horizontal magma flow and emplacement of the Newry igneous complex as laccolithic bodies. This study suggests that simplistic emplacement models should largely be abandoned in favor of holistic models incorporating the multiple interdependent processes operating during magma ascent and emplacement
- …