612 research outputs found

    Gamma-herpesvirus latency requires T cell evasion during episome maintenance.

    Get PDF
    The gamma-herpesviruses persist as latent episomes in a dynamic lymphocyte pool. Their consequent need to express a viral episome maintenance protein presents a potential immune target. The glycine-alanine repeat of the Epstein-Barr virus episome maintenance protein, EBNA-1, limits EBNA-1 epitope presentation to CD8(+) T lymphocytes (CTLs). However, CTL recognition occurs in vitro, so the significance of such evasion for viral fitness is unclear. We used the murine gamma-herpesvirus-68 (MHV-68) to define the in vivo contribution of cis-acting CTL evasion to host colonisation. Although the ORF73 episome maintenance protein of MHV-68 lacks a glycine-alanine repeat, it was equivalent to EBNA-1 in conferring limited presentation on linked epitopes. This was associated with reduced protein synthesis and reduced protein degradation. We bypassed the cis-acting evasion of ORF73 by using an internal ribosome entry site to express in trans-a CTL target from the same mRNA. This led to a severe, MHC class I-restricted and CTL-dependent reduction in viral latency. Thus, despite MHV-68 encoding at least two trans-acting CTL evasion proteins, cis-acting evasion during episome maintenance was essential for normal host colonisation

    KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction.

    Get PDF
    This is the accepted manuscript. The final version is available from Wiley at http://onlinelibrary.wiley.com/doi/10.15252/embj.201490358/abstract.Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology.This work was supported by Medical Research Council grant G0701185 to PGS and MBG. M.W is supported by Cancer Research UK

    Type 1 interferons and NK cells restrict gamma-herpesvirus lymph node infection

    Get PDF
    Gamma-herpesviruses establish persistent, systemic infections and cause cancers. Murid Herpesvirus-4 (MuHV-4) provides a unique window onto the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defence. Type I interferons (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required; but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when IFN-I responses and NK cells were both lacking. Thus, multiple innate defences allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and so improve infection control

    Validity and Reliability of Firefighting Simulation Test Performance

    Get PDF
    To assess the validity and reliability of a firefighting simulation test (FFST). Sixty-nine operational firefighters completed a best-effort FFST on one occasion and twenty-two participants completed a further FFST. All participants completed a maximal treadmill test to determine cardiorespiratory fitness (VO2max). Time to complete the FFST demonstrated a strong inverse relationship with VO2max (r = -0.73), although the prediction error was high. Reliability of the FFST was high (r = 0.84, p = 0.01), demonstrating a coefficient of variation of 4.5%. The FFST demonstrated reasonable validity as a surrogate assessment of cardiorespiratory fitness for firefighting. The FFST also demonstrated good reliability. Given the apparent magnitude of the prediction error, the FFST would be best used as a training tool, rather than as a primary means of assessing cardiorespiratory fitness for firefighting

    In vivo function of the murid herpesvirus-4 ribonucleotide reductase small subunit

    Get PDF
    The difficulty of eliminating herpesvirus carriage makes host entry a key target for infection control. However, its viral requirements are poorly defined. Murid herpesvirus-4 (MuHV-4) can potentially provide insights into gammaherpesvirus host entry. Upper respiratory tract infection requires the MuHV-4 thymidine kinase (TK) and ribonucleotide reductase large subunit (RNR-L), suggesting a need for increased nucleotide production. However, both TK and RNR-L are likely to be multifunctional. We therefore tested further the importance of nucleotide production by disrupting the MuHV-4 ribonucleotide reductase small subunit (RNR-S). This caused a similar attenuation to RNR-L disruption: despite reduced intra-host spread, invasive inoculations still established infection, whereas a non-invasive upper respiratory tract inoculation did so only at high dose. Histological analysis showed that RNR-S−, RNR-L− and TK− viruses all infected cells in the olfactory neuroepithelium but unlike wild-type virus then failed to spread. Thus captured host nucleotide metabolism enzymes, up to now defined mainly as important for alphaherpesvirus reactivation in neurons, also have a key role in gammaherpesvirus host entry. This seemed to reflect a requirement for lytic replication to occur in a terminally differentiated cell before a viable pool of latent genomes could be established

    Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses.

    Get PDF
    Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8(+) T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8(+) cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8(+) CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8(+) OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy.C.E.R. was supported by Wellcome Trust 092627/Z/10/Z, J.A.H. by an Irvington Institute Postdoctoral Fellowship from the Cancer Research Institute (New York), and E.I.Z. by a Leukemia and Lymphoma Society Scholar Award and a grant from the NIH AI081923. We thank Dr. Graham Lord (King’s College London) for the kind gift of the Ifng CNS-12 promoter.This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.immuni.2016.01.01

    A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization

    Get PDF
    Glycoprotein B (gB) is a conserved, essential component of gammaherpes virions and so potentially vulnerable to neutralization. However, few good gB-specific neutralizing antibodies have been identified. Here, we show that murid herpesvirus 4 is strongly neutralized by mAbs that recognize an epitope close to one of the gB fusion loops. Antibody binding did not stop gB interacting with its cellular ligands or initiating its fusion-associated conformation change, but did stop gB resolving stably to its post-fusion form, and so blocked membrane fusion to leave virions stranded in late endosomes. The conservation of gB makes this mechanism a possible general route to gammaherpesvirus neutralization

    Lymph node macrophages restrict murine cytomegalovirus dissemination

    Get PDF
    Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169(+) subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7(+) stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication

    Murid herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for host colonization

    Get PDF
    Gammaherpesviruses infect at least 90 % of the world's population. Infection control is difficult, in part because some fundamental features of host colonization remain unknown, for example whether normal latency establishment requires viral lytic functions. Since human gammaherpesviruses have narrow species tropisms, answering such questions requires animal models. Murid herpesvirus-4 (MuHV-4) provides one of the most tractable. MuHV-4 genomes delivered to the lung or peritoneum persist without lytic replication. However, they fail to disseminate systemically, suggesting that the outcome is inoculation route-dependent. After upper respiratory tract inoculation, MuHV-4 infects mice without involving the lungs or peritoneum. We examined whether host entry by this less invasive route requires the viral thymidine kinase (TK), a gene classically essential for lytic replication in terminally differentiated cells. MuHV-4 TK knockouts delivered to the lung or peritoneum were attenuated but still reached lymphoid tissue. In contrast, TK knockouts delivered to the upper respiratory tract largely failed to establish a detectable infection. Therefore TK, and by implication lytic replication, is required for MuHV-4 to establish a significant infection by a non-invasive route

    Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency

    Get PDF
    The lytic cycle functions of gammaherpesviruses have received relatively little attention to date, at least in part due to the lack of a convenient experimental model. The murine gammaherpesvirus 68 (MHV-68) now provides such a model and allows the roles of individual lytic cycle gammaherpesvirus proteins to be evaluated in vivo. We have used MHV-68 to determine the contribution of a gammaherpesvirus thymidine kinase (TK) to viral lytic replication and latency establishment. MHV-68 mutants with a disrupted TK gene grew normally in vitro but showed a severe attenuation of replication in the lungs after intranasal inoculation, with lytic titers at least 1,000-fold lower than those of wild-type and revertant viruses. Nevertheless, the establishment of latency by the TK-deficient mutants, while delayed, was not prevented by their lytic replication deficit. The viral TK clearly plays a crucial role in the capacity of MHV-68 to replicate efficiently in its natural host but does not seem to be essential to establish a persistent infection. The potential of TK-deficient mutants as gammaherpesvirus vaccines is discussed
    corecore