2,609 research outputs found
Determinants of bed net use in The Gambia: implications for malaria control
Malaria is still one of the biggest health threats in the developing world, with an estimated 300 million episodes per year and one million deaths, most of which are in sub-Saharan Africa. Although the efficacy and cost-effectiveness of treated bed nets has been widely reported, little is known about the range, strength, or interaction between different factors that influence their demand at the household level. This study modeled the determinants of bed net ownership as well as the factors that influence the number of bed nets purchased. Data was collected from 1,700 randomly selected households in the Farafenni region of The Gambia. Interviews were also held with 129 community spokespersons to explore the extent to which community level factors such as the quality of roads and access to market centers also influence demand for bed nets. The results of each model of demand and their policy implications are discussed
HIV / AIDS prevalence testing - merits, methodology and outcomes of a survey conducted at a large mining organisation in South Africa
Objectives: To determine the HIV prevalence rate at Anglo Platinum, a large, multinational organisation operating in South Africa (Gauteng, Limpopo and North-West), and to assess the merits, methodology and outcomes of the survey. Methods: A sample of 11 339 individuals, representing 18.4% of the organisation's employees, were tested for HIV. HIV prevalence was determined using the Wellcozyme HIV 1+2 GACELISA test (oral fluid assay), and variables such as age, site, grade and gender were analysed. Results: The overall prevalence rate was 24.6% (95% confidence interval (CI): 20.4 - 28.8), translating into approximately 15 167 HIV-infected individuals. Interestingly, there was considerable variation in prevalence between sites within the same geographical regions, highlighting the limitations of using data obtained from antenatal HIV surveillance surveys. As an example, the prevalence at sites in Limpopo province ranged from 9.8% to 19%, with the same basic demographic data in terms of race, age and gender. Conclusions: The survey data enabled the organisation to plan resource allocation appropriately for each business unit following their commitment to the treatment of infected employees with antiretroviral therapy. These baseline prevalence data also provide an opportunity for monitoring of proposed interventions using cross-sectional surveys at designated intervals in the future. South African Medical Journal Vol. 96(2) 2006: 134-13
Whole-body mathematical model for simulating intracranial pressure dynamics
A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment
"Endomicrobia" and Other Bacteria Associated with the Hindgut of Dermolepida albohirtum Larvae
Symbiotic bacteria residing in the hindgut chambers of scarab beetle larvae may be useful in paratransgenic approaches to reduce larval root-feeding activities on agricultural crops. We compared the bacterial community profiles associated with the hindgut walls of individual Dermolepida albohirtum third-instar larvae over 2 years and those associated with their plant root food source among different geographic regions. Denaturing gradient gel electrophoresis analysis was used with universal and Actinobacteria-specific 16S rRNA primers to reveal a number of taxa that were found consistently in all D. albohirtum larvae but not in samples from their food source, sugarcane roots. These taxa included representatives from the "Endomicrobia," Firmicutes, Proteobacteria, and Actinobacteria and were related to previously described bacteria from the intestines of other scarab larvae and termites. These universally distributed taxa have the potential to form vertically transmitted symbiotic associations with these insects
Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas
AbstractPurpose: Apoptosis is a physiologic mechanism of cell death that regulates mass and architecture in many tissues. Apoptosis has been described as a feature in human vascular atherosclerosis and large vessel structural integrity. We examined the extent of vascular smooth muscle cell (VSMC) apoptosis in aneurysmal, occlusive, and normal human aortic tissue. Methods: Tissue samples of aneurysmal, occlusive, and normal human infrarenal aorta were evaluated. DNA fragmentation detection methods, immunohistochemistry, and DNA electrophoresis determined VSMC density, VSMC apoptosis, and apoptosis markers. Apoptotic cells and VSMC nuclei were counted with the use of computer-generated image analysis. Aortic subtypes were compared statistically by analysis of variance. Results: Seventeen aneurysmal, ten occlusive, and five normal human aortas were evaluated. By α1-actin immunostaining, VSMC density was least in aneurysmal aortas (271.8 ± 13.5 cells/high-power field [HPF]) compared with occlusive aorta (278.2 ± 39.4 cells/HPF) and normal aortas (291.0 ± 25.4 cells/HPF; P = not significant). Presence of apoptotic VSMCs was demonstrated by terminal deoxynucleotidyl transferase fragment end labeling and propidium iodide nuclear staining. VSMC apoptosis was greatest within aneurysmal aortas with 11.7 ± 1.5 cells/HPF compared with occlusive aortas with 3.3 ± 0.8 cells/HPF (P <.05) and normal aortas with 3.75 ± 4.6 cells/HPF (P <.05). Significant differences in apoptosis markers, p53 or bcl-2, could not be demonstrated by immunohistochemistry or DNA electrophoresis in aortic subtypes. Conclusion: Apoptosis of VSMCs is increased and VSMC density is decreased within the medial layer of aneurysmal aortic tissue. Structural degeneration of aortic tissue at the cellular level contributes to aneurysmal formation. (J Vasc Surg 2000;31:567-576.
Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation
Multiple myeloma (MM) has benefited from significant advancements in treatment that have improved outcomes and reduced morbidity. However, the disease remains incurable and is characterized by high rates of drug resistance and relapse. Consequently, methods to select the most efficacious therapy are of great interest. Here we utilize a functional assay to assess the ex vivo drug sensitivity of single multiple myeloma cells based on measuring their mass accumulation rate (MAR). We show that MAR accurately and rapidly defines therapeutic susceptibility across human multiple myeloma cell lines to a gamut of standard-of-care therapies. Finally, we demonstrate that our MAR assay, without the need for extended culture ex vivo, correctly defines the response of nine patients to standard-of-care drugs according to their clinical diagnoses. This data highlights the MAR assay in both research and clinical applications as a promising tool for predicting therapeutic response using clinical samples
Microfluidic active loading of single cells enables analysis of complex clinical specimens
A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce ‘active loading’, an automated, optically-triggered fluidic system that improves measurement throughput and robustness by controlling entry of individual cells into a measurement channel. We apply active loading to samples over a range of concentrations (1–1000 particles μL[superscript −1]), demonstrate that measurement time can be decreased by up to 20-fold, and show theoretically that performance of some types of existing single-cell microfluidic devices can be improved by implementing active loading. Finally, we demonstrate how active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements by deploying it to a preclinical setting where we assess patient samples from normal brain, primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of confounding biological debris.National Cancer Institute (U.S.) (R01 CA170592)National Cancer Institute (U.S.) (R33 CA191143)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)Bridge Projec
Microfluidic active loading of single cells enables analysis of complex clinical specimens
A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce ‘active loading’, an automated, optically-triggered fluidic system that improves measurement throughput and robustness by controlling entry of individual cells into a measurement channel. We apply active loading to samples over a range of concentrations (1–1000 particles μL[superscript −1]), demonstrate that measurement time can be decreased by up to 20-fold, and show theoretically that performance of some types of existing single-cell microfluidic devices can be improved by implementing active loading. Finally, we demonstrate how active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements by deploying it to a preclinical setting where we assess patient samples from normal brain, primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of confounding biological debris.National Cancer Institute (U.S.) (R01 CA170592)National Cancer Institute (U.S.) (R33 CA191143)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)Bridge Projec
- …