21,359 research outputs found

    Interactions between large space power systems and low-Earth-orbit plasmas

    Get PDF
    There is a growing tendency to plan space missions that will incorporate very large space power systems. These space power systems must function in the space plasma environment, which can impose operational limitations. As the power output increases, the operating voltage also must increase and this voltage, exposed at solar array interconnects, interacts with the local plasma. The implications of such interactions are considered. The available laboratory data for biased array segment tests are reviewed to demonstrate the basic interactions considered. A data set for a floating high voltage array test was used to generate approximate relationships for positive and negative current collection from plasmas. These relationships were applied to a hypothetical 100 kW power system operating in a 400 km, near equatorial orbit. It was found that discharges from the negative regions of the array are the most probable limiting factor in array operation

    Computer and laboratory simulation of interactions between spacecraft surfaces and charged-particle environments

    Get PDF
    Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed

    Environmentally induced discharges on satellites

    Get PDF
    The problem of assessing hazards to geosynchronous satellite systems from geomagnetic substorm encounters is investigated. The available space flight data, coupled with analytical modeling studies, show that only relatively low differential charging is possible from environmental encounters. Using an analytical study of a discharge event on SCATHA, a discharge process is postulated where a small amount of charge is lost to space. These characteristics could then be used as inputs to a coupling model to determine the hazard to a spacecraft. The procedure is applied to a three axis stabilized satellite design

    Review of biased solar arraay. Plasma interaction studies

    Get PDF
    The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented

    Computed voltage distributions around solar electric propulsion spacecraft

    Get PDF
    The NASA Charging Analyzer Program is used to conduct preliminary computations of the voltage distributions around such large spacecraft in geomagnetic substorm environments at geosynchronous altitudes. Both a standard operating voltage (+ or - 150 volts on solar arrays) and direct-drive (+1200 volts on arrays) configurations are considered. Thruster-off simulations are computed for both operating voltage configurations while the effect of simulated thruster-on conditions are evaluated only for direct-drive configuration. These simulated thruster-on conditions are evaluated only for direct-drive configuration. These simulated thruster operations appear to alleviate surface charging

    Determination of the extent of ion thruster efflux

    Get PDF
    In the studies of proposed electric propulsion missions one of the areas of concern is the possible contamination of spacecraft instruments and thermal control surfaces by exhaust particles from an ion thruster. Vacuum tank tests were conducted in ground facilities to determine the extent of this deposition by thruster exhaust particles, but the application of these results to long term space missions is questionable. The flight thermal data from the SERT II satellite, the only electric propulsion mission with an extensive thruster operational history, was reviewed specifically to see if there is any evidence of contamination that could be attributed to the 5860 hours of mercury bombardment ion thruster operation. This evaluation of the flight data shows that the only evidence of deposition occurred on the contamination experiment solar cells which are located at the edge of the thruster exhaust beam. There is no evidence of any deposition of ion thruster efflux on any other surface of the satellite

    Space environmental interactions with spacecraft surfaces

    Get PDF
    Environmental interactions are defined as the response of spacecraft surfaces to the charged-particle environment. These interactions are divided into two broad categories: spacecraft passive, in which the environment acts on the surfaces and spacecraft active, in which the spacecraft or a system on the spacecraft causes the interaction. The principal spacecraft passive interaction of concern is the spacecraft charging phenomenon. The spacecraft active category introduces the concept of interactions with the thermal plasma environment and Earth's magnetic fields, which are important at all altitudes and must be considered the designs of proposed large space structures and space power systems. The status of the spacecraft charging investigations is reviewed along with the spacecraft active interactions

    NASCAP modelling of environmental-charging-induced discharges in satellites

    Get PDF
    The charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, were studied utilizing the NASA Charging Analyzer Program (NASCAP). An electric field criteria of 150,000 volts/cm to initiate discharges and transfer of 67 percent of the stored charge was used based on ground test results. The substorm characteristics were arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It was found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the substorm environments

    Large space system: Charged particle environment interaction technology

    Get PDF
    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems

    NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments

    Get PDF
    The NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced spacecraft contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface
    corecore