17 research outputs found

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity

    Grain Yield Response of Corn (Zea mays L.) to Nitrogen Management Practices and Flooding

    No full text
    Flooding can reduce corn growth and yield, but nitrogen (N) management practices may alter the degree to which plants are negatively impacted. Damage caused by flooded conditions may also affect the utilization of a post-flood N application to increase yield. The objectives of this study were to evaluate how pre-plant and pre-plant plus post-flood N applications contribute to corn growth and yield following flood conditions and to quantify the partial return of employing different N management strategies in the event of a flood. A field study was conducted in Ohio using four flood durations (FD; 0, 2, 4, or 6 days initiated at V4 to V5) and three N management practices (0 kg N ha−1, 134 kg N ha−1 applied pre-plant, and 134 pre-plant + 67 kg N ha−1 applied post-flooding). Application of 134 kg N ha−1 increased yield compared to 0 kg N ha−1 by 65%, 68%, 43% and 16% for 0 d, 2 d, 4 d, and 6 d FD, respectively; the application of 134 + 67 kg N ha−1 increased grain yield compared to 134 kg N ha−1 by 7%, 27%, 70%, or 55% for 0 d, 2 d, 4 d, or 6 d FD, respectively. Partial return analysis produced similar results to those for grain yield. Results suggest that in regions prone to early-season flooding, additional N applied post-flood can improve yield and partial return compared to the application of pre-plant alone at a lower rate or no N. Results indicate that total soil nitrate-N levels two weeks after flood initiation may serve as a good predictor of yield

    From the Ground Up: Prairies on Reclaimed Mine Land—Impacts on Soil and Vegetation

    No full text
    After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits

    Farmer-Focused tools to improve soil health monitoring on smallholder farms in the Morogoro region of Tanzania

    No full text
    A participatory approach was used to improve smallholder tomato farmers’ understanding of and access to soil health monitoring in the Morogoro Region of Tanzania. Baseline soil characteristics were gathered from 50 tomato fields in the region, local soil knowledge was elicited from farmers and used to de- velop a soil health card to qualitatively assess soil health, and farmers (n = 32) were trained on the use of a low-cost soil test kit to quantitatively assess soil health. Farmers most often described local indicators of soil health in terms of soil texture and tilth, soil color, soil water relations, and soil fertility. Following use of the soil test kit, farmers indicated increased awareness of soil testing services (Wilcoxon signed rank Z = –3.0, P = 0.001), more agreed they had access to soil testing services (Z = –2.7, P = 0.004), and more agreed that soil management recommendations were easy to understand (Z = –3.4, P < 0.0001) compared with pre-exposure results. Farmers continued to use the soil health test kit and soil health card based on a follow-up survey administered 1 year after project completion. Participatory soil health monitoring projects can improve farmers’ ability to monitor and manage soil health, potentially impacting sustained soil and plant health.United States Agency for International Development - United States Borlaug Fellows in Global Food Security and iAgr

    Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop

    No full text
    Kernza&reg; intermediate wheatgrass [IWG; Thinopyrum intermedium (Host) Barkworth &amp; Dewey] is a novel perennial cool-season grass that is being bred for use as a dual-purpose grain and forage crop. The environmental benefits of perennial agriculture have motivated the development of IWG cropping systems and markets for perennial grain food products made with Kernza, but the economic viability and environmental impact of IWG remain uncertain. In this study, we compared three-year cycles of five organic grain production systems: an IWG monoculture, IWG intercropped with medium red clover, a continuous winter wheat monoculture, a wheat&ndash;red clover intercrop, and a corn&ndash;soybean&ndash;spelt rotation. Economic and environmental impacts of each cropping system were assessed using enterprise budgets, energy use, greenhouse gas (GHG) emissions, and emergy indices as indicators. Grain and biomass yields and values for production inputs used in these analyses were obtained from experimental data and management records from two separate field experiments conducted in New York State, USA. Grain yield of IWG averaged 478 kg ha&minus;1 yr&minus;1 over three years, equaling approximately 17% of winter wheat grain yield (2807 kg ha&minus;1 yr&minus;1) over the same period. In contrast, total forage harvested averaged 6438 kg ha&minus;1 yr&minus;1 from the IWG systems, approximately 160% that of the wheat systems (4024 kg ha&minus;1 yr&minus;1). Low grain yield of IWG greatly impacted economic indicators, with break-even farm gate prices for Kernza grain calculated to be 23% greater than the current price of organic winter wheat in New York. Energy use and GHG emissions from the IWG systems were similar to the annual systems when allocated per hectare of production area but were much greater when allocated per kg of grain produced and much lower when allocated per kg of biomass harvested inclusive of hay and straw. Emergy sustainability indices were favorable for the IWG systems due to lower estimated soil erosion and fewer external inputs over the three-year crop cycle. The results show that the sustainability of IWG production is highly dependent on how the hay or straw co-product is used and the extent to which external inputs can be substituted with locally available renewable resources. Integrated crop&ndash;livestock systems appear to be a viable scenario for the adoption of IWG as a dual-use perennial grain and forage crop

    Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento Valley, California

    Get PDF
    Forested riparian buffers in California historically supported high levels of biodiversity, but human activities have degraded these ecosystems over much of their former range. This study examined plant communities, belowground biodiversity and indicators of multiple ecosystem functions of riparian areas across an agricultural landscape in the Sacramento Valley of California, USA. Plant, nematode and soil microbial communities and soil physical and chemical properties were studied along 50-m transects at 20 sites that represented the different land use, soil and vegetation types in the landscape. Riparian zones supported greater plant diversity and nearly twice as much total carbon (C) per hectare compared to adjacent land managed for agricultural uses, but had generally lower soil microbial and nematode diversity and abundance. When woody plant communities were present in the riparian zone, plant diversity and species richness were higher, and soil nitrate and plant-available phosphorus levels were lower. Belowground diversity and community structure, however, appeared to depend more on plant productivity (as inferred by vegetation cover) than plant diversity or species richness. Greater plant species richness, nematode food web structure, total microbial biomass, woody C storage and lower soil nitrate and phosphorus loading were correlated with higher visual riparian health assessment scores, offering the possibility of managing these riparian habitats to provide multiple ecosystem functions
    corecore