181 research outputs found

    Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru.

    Get PDF
    During the last 50 years, the geographic range of the mosquito Aedes aegypti has increased dramatically, in parallel with a sharp increase in the disease burden from the viruses it transmits, including Zika, chikungunya, and dengue. There is a growing consensus that vector control is essential to prevent Aedes-borne diseases, even as effective vaccines become available. What remains unclear is how effective vector control is across broad operational scales because the data and the analytical tools necessary to isolate the effect of vector-oriented interventions have not been available. We developed a statistical framework to model Ae. aegypti abundance over space and time and applied it to explore the impact of citywide vector control conducted by the Ministry of Health (MoH) in Iquitos, Peru, over a 12-year period. Citywide interventions involved multiple rounds of intradomicile insecticide space spray over large portions of urban Iquitos (up to 40% of all residences) in response to dengue outbreaks. Our model captured significant levels of spatial, temporal, and spatio-temporal variation in Ae. aegypti abundance within and between years and across the city. We estimated the shape of the relationship between the coverage of neighborhood-level vector control and reductions in female Ae. aegypti abundance; i.e., the dose-response curve. The dose-response curve, with its associated uncertainties, can be used to gauge the necessary spraying effort required to achieve a desired effect and is a critical tool currently absent from vector control programs. We found that with complete neighborhood coverage MoH intra-domicile space spray would decrease Ae. aegypti abundance on average by 67% in the treated neighborhood. Our framework can be directly translated to other interventions in other locations with geolocated mosquito abundance data. Results from our analysis can be used to inform future vector-control applications in Ae. aegypti endemic areas globally

    Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our understanding of the effects of human movement on dengue virus spread remains limited in part due to the lack of precise tools to monitor the time-dependent location of individuals. We determined the utility of a new, commercially available, GPS data-logger for long-term tracking of human movements in Iquitos, Peru. We conducted a series of evaluations focused on GPS device attributes key to reliable use and accuracy. GPS observations from two participants were later compared with semi-structured interview data to assess the usefulness of GPS technology to track individual mobility patterns.</p> <p>Results</p> <p>Positional point and line accuracy were 4.4 and 10.3 m, respectively. GPS wearing mode increased spatial point error by 6.9 m. Units were worn on a neck-strap by a carpenter and a moto-taxi driver for 14-16 days. The application of a clustering algorithm (I-cluster) to the raw GPS positional data allowed the identification of locations visited by each participant together with the frequency and duration of each visit. The carpenter moved less and spent more time in more fixed locations than the moto-taxi driver, who visited more locations for a shorter period of time. GPS and participants' interviews concordantly identified 6 common locations, whereas GPS alone identified 4 locations and participants alone identified 10 locations. Most (80%) of the locations identified by participants alone were places reported as visited for less than 30 minutes.</p> <p>Conclusion</p> <p>The present study demonstrates the feasibility of a novel, commercially available GPS data-logger for long-term tracking of humans and shows the potential of these units to quantify mobility patterns in relationship with dengue virus transmission risk in a tropical urban environment. Cost, battery life, size, programmability and ease of wear are unprecedented from previously tested units, proving the usefulness of GPS-dataloggers for linking movement of individuals and transmission risk of dengue virus and other infectious agents, particularly in resource-poor settings.</p

    Calling in sick: Impacts of fever on intra-urban human mobility

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved. Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure

    Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru

    Get PDF
    © 2016 Public Library of Science. All Rights Reserved. Background: Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region. Methodology/Principal Findings: We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7). Conclusions/Significance: Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics

    Synthesis

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees
    • …
    corecore