646 research outputs found

    Phase Conjugation and Negative Refraction Using Nonlinear Active Metamaterials

    Full text link
    We present experimental demonstration of phase conjugation using nonlinear metamaterial elements. Active split-ring resonators loaded with varactor diodes are demonstrated theoretically to act as phase-conjugating or time-reversing discrete elements when parametrically pumped and illuminated with appropriate frequencies. The metamaterial elements were fabricated and shown experimentally to produce a time reversed signal. Measurements confirm that a discrete array of phase-conjugating elements act as a negatively-refracting time reversal RF lens only 0.12λ\lambda thick

    Pharma to Farmer: Field Challenges of Optimizing Trypanocide use in African Animal Trypanosomiasis

    Get PDF
    Trypanocides are a key control component of African animal trypanosomiasis (AAT) in tsetse-infested areas of sub-Saharan Africa. While farmers are dependent upon trypanocides, recent research highlights their inappropriate and ineffective use, problems with drug quality, and treatment failure. There are currently gaps in knowledge and investment in inexpensive AAT diagnostics, understanding of drug resistance, and the effective use of trypanocides in the field. Without this important knowledge it is difficult to develop best practice and policy for existing drugs or to inform development and use of new drugs. There needs to be better understanding of the drivers and behavioural practices around trypanocide use so that they can be incorporated into sustainable solutions needed for the development of effective control of AAT

    Mapping Rangeland Health Indicators in East Africa from 2000 to 2022

    Get PDF
    Tracking environmental change is important to ensure efficient and sustainable natural resources management. East Africa is dominated by arid and semi-arid rangeland systems, where extensive grazing of livestock represents the primary livelihood for most of the human population. Despite several mapping efforts, East Africa lacks accurate and reliable high-resolution rangeland health maps necessary for management, policy, and research purposes. Earth Observations offer the opportunity to assess spatiotemporal dynamics in rangeland health conditions at much higher spatial and temporal coverage than conventional approaches that rely on in-situ methods, while complimenting their certainty. Using machine learning-based classification and linear unmixing, this paper produced Landsat-based time series at 30 m spatial resolution for mapping of land cover classes (LCC) and vegetation fractional cover (VFC, including photosynthetic vegetation PV, non-photosynthetic vegetation NPV, and bare ground BG), two major data assets to derive metrics for rangeland health in East Africa. Due to scarcity of in-situ measurements in a large, remote and highly heterogeneous landscape, an algorithm was developed to combine very high-resolution WorldView-2 and -3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate reference labels across the study region. The LCC analysis yielded an overall accuracy of 0.856 using our validation dataset, with Kappa of 0.832; VFC, yielded R2 = 0.801, p < 2.2e-16, normalized root mean squared error (nRMSE) = 0.123. Our products represent the first multi-decadal high-resolution dataset specifically designed for mapping and monitoring rangelands health in East Africa including Kenya, Ethiopia and Somalia, covering a total area of 745,840 km2, dominated by arid and semi-arid extensive rangeland systems. These data can be valuable to a wide range of development, humanitarian, and ecological conservation efforts and are available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine (GEE; details in data availability section)

    Mapping Rangeland Health Indicators in East Africa from 2000 to 2022

    Get PDF
    Tracking environmental change is important to ensure efficient and sustainable natural resources management. East Africa is dominated by arid and semi-arid rangeland systems, where extensive grazing of livestock represents the primary livelihood for most of the human population. Despite several mapping efforts, East Africa lacks accurate and reliable high-resolution rangeland health maps necessary for management, policy, and research purposes. Earth Observations offer the opportunity to assess spatiotemporal dynamics in rangeland health conditions at much higher spatial and temporal coverage than conventional approaches that rely on in-situ methods, while complimenting their certainty. Using machine learning-based classification and linear unmixing, this paper produced Landsat-based time series at 30 m spatial resolution for mapping of land cover classes (LCC) and vegetation fractional cover (VFC, including photosynthetic vegetation PV, non-photosynthetic vegetation NPV, and bare ground BG), two major data assets to derive metrics for rangeland health in East Africa. Due to scarcity of in-situ measurements in a large, remote and highly heterogeneous landscape, an algorithm was developed to combine very high-resolution WorldView-2 and -3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate reference labels across the study region. The LCC analysis yielded an overall accuracy of 0.856 using our validation dataset, with Kappa of 0.832; VFC, yielded R2 = 0.801, p < 2.2e-16, normalized root mean squared error (nRMSE) = 0.123. Our products represent the first multi-decadal high-resolution dataset specifically designed for mapping and monitoring rangelands health in East Africa including Kenya, Ethiopia and Somalia, covering a total area of 745,840 km2, dominated by arid and semi-arid extensive rangeland systems. These data can be valuable to a wide range of development, humanitarian, and ecological conservation efforts and are available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine (GEE; details in data availability section)

    Analytic approximations of scattering effects on beam chromaticity in 21-cm global experiments

    Full text link
    Scattering from objects near an antenna produce correlated signals from strong compact radio sources in a manner similar to those used by the Sea Interferometer to measure the radio source positions using the fine frequency structure in the total power spectrum of a single antenna. These fringes or ripples due to correlated signal interference are present at a low level in the spectrum of any single antenna and are a major source of systematics in systems used to measure the global redshifted 21-cm signal from the early universe. In the Sea Interferometer a single antenna on a cliff above the sea is used to add the signal from the direct path to the signal from the path reflected from the sea thereby forming an interferometer. This was used for mapping radio sources with a single antenna by Bolton and Slee in the 1950s. In this paper we derive analytic expressions to determine the level of these ripples and compare these results in a few simple cases with electromagnetic modeling software to verify that the analytic calculations are sufficient to obtain the magnitude of the scattering effects on the measurements of the global 21-cm signal. These analytic calculations are needed to evaluate the magnitude of the effects in cases that are either too complex or take too much time to be modeled using software

    A Bayesian approach to modelling spectrometer data chromaticity corrected using beam factors -- I. Mathematical formalism

    Full text link
    Accurately accounting for spectral structure in spectrometer data induced by instrumental chromaticity on scales relevant for detection of the 21-cm signal is among the most significant challenges in global 21-cm signal analysis. In the publicly available EDGES low-band data set, this complicating structure is suppressed using beam-factor based chromaticity correction (BFCC), which works by dividing the data by a sky-map-weighted model of the spectral structure of the instrument beam. Several analyses of this data have employed models that start with the assumption that this correction is complete. However, while BFCC mitigates the impact of instrumental chromaticity on the data, given realistic assumptions regarding the spectral structure of the foregrounds, the correction is only partial. This complicates the interpretation of fits to the data with intrinsic sky models (models that assume no instrumental contribution to the spectral structure of the data). In this paper, we derive a BFCC data model from an analytic treatment of BFCC and demonstrate using simulated observations that, in contrast to using an intrinsic sky model for the data, the BFCC data model enables unbiased recovery of a simulated global 21-cm signal from beam-factor chromaticity corrected data in the limit that the data is corrected with an error-free beam-factor model.Comment: 26 pages, 8 figures; accepted for publication in MNRA

    Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles.

    Get PDF
    A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMA x -PTFEMA y nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100-1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm(-3) for the smaller particles and 1.41 g cm(-3) for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm(-3)). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact

    To what extent can headteachers be held to account in the practice of social justice leadership?

    Get PDF
    Internationally, leadership for social justice is gaining prominence as a global travelling theme. This article draws from the Scottish contribution to the International School Leadership Development Network (ISLDN) social justice strand and presents a case study of a relatively small education system similar in size to that of New Zealand, to explore one system's policy expectations and the practice realities of headteachers (principals) seeking to address issues around social justice. Scottish policy rhetoric places responsibility with headteachers to ensure socially just practices within their schools. However, those headteachers are working in schools located within unjust local, national and international contexts. The article explores briefly the emerging theoretical analyses of social justice and leadership. It then identifies the policy expectations, including those within the revised professional standards for headteachers in Scotland. The main focus is on the headteachers' perspectives of factors that help and hinder their practice of leadership for social justice. Macro systems-level data is used to contextualize equity and outcomes issues that headteachers are working to address. In the analysis of the dislocation between policy and reality, the article asks, 'to what extent can headteachers be held to account in the practice of social justice leadership?

    The Grizzly, September 22, 1989

    Get PDF
    Kane Claiming Greeks Shall Survive • Olin Noise Annoys All • Letters: Boot Booze Begs Senior; Rovers Rotten • DiFeliciantonio: A Mouthful • McNulty Directs Residents • Surprise, surprise! UC Stomps Swarthmore • Ursinus Closes Gap with F&M Diplomats • Commentary; Why Bush War Can\u27t be Won; HPER Lab a Strong Addition • Intramurals: Full Steam Ahead! • One Giant Step • Sports Summary • Pledging: End of an Era? • BWC Causes Electrical Overloadhttps://digitalcommons.ursinus.edu/grizzlynews/1241/thumbnail.jp
    • …
    corecore