917 research outputs found

    Short Term Development and Fate of MGE-Like Neural Progenitor Cells in Jaundiced and Non-Jaundiced Rat Brain

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Neonatal hyperbilirubinemia targets specific brain regions and can lead to kernicterus. One of the most debilitating symptoms of kernicterus is dystonia, which results from bilirubin toxicity to the globus pallidus (GP). Stem cell transplantation into the GP to replace lost neurons and restore basal ganglia circuits function is a potential therapeutic strategy to treat dystonia in kernicterus. In this study we transplanted human medial ganglionic eminence (MGE)-like neural progenitor cells (NPCs) that we differentiated into a primarily gamma-aminobutyric acid (GABA)ergic phenotype, into the GP of non-immunosuppressed jaundiced (jj) and non-jaundiced (Nj) rats. We assessed the survival and development of graft cells at three time-points post-transplantation. While grafted MGE-like NPCs survived and generated abundant fibers in both jj and Nj brains, NPC survival was greater in the jj brain. These results were consistent with our previous finding that excitatory spinal interneuron-like NPCs exhibited a higher survival rate in the jj brain than in the Nj brain. Our findings further support our hypothesis that slightly elevated bilirubin levels in the jj brain served as an antioxidant and immunosuppressant to protect the transplanted cells. We also identified graft fibers growing toward brain regions that receive projections from the GP, as well as host fibers extending toward the graft. These promising findings suggest that MGE-like NPCs may have the capacity to restore the circuits connecting GP and other nuclei.NIH Center of Biomedical Research Excellence program project P20 GM104936Children's Mercy HospitalRonald D. Deffenbaugh FoundationKansas Intellectual and Developmental Disabilities Research Center HD09021

    Matrilysin-dependent Elastolysis by Human Macrophages

    Get PDF
    Human macrophages found in juxtaposition to fragmented elastin in vivo express the elastolytic matrix metalloproteinases (MMPs) progelatinase B, prometalloelastase, and promatrilysin. Though MMPs can degrade a range of extracellular matrix components, increasing evidence suggests that preferred targets in vivo include nonmatrix substrates such as chemokines and growth factors. Hence, the means by which MMPs participate in elastin turnover remain undefined as does the identity of the elastolysins. Herein, human macrophage cultures have been established that express a complement of elastolytic proteinases similar, if not identical, to that found in vivo. Under plasminogen-free conditions, macrophages preferentially use metalloelastase to mediate elastolysis via a process that deposits active enzyme on elastin surfaces. By contrast, in the presence of plasminogen, human macrophages up-regulate proteolysis 10-fold by processing promatrilysin to an active elastolysin via a urokinase-type plasminogen activator-dependent pathway. Matrilysin-deficient human macrophages fail to mediate an elastolytic response despite the continued expression of gelatinase B and metalloelastase. Thus, acting in concert with cosecreted cysteine proteinases whose activities are constrained to sites of macrophage-elastin contact (Punturieri, A., S. Filippov, E. Allen, I. Caras, R. Murray, V. Reddy, and S.J. Weiss. 2000. J. Exp. Med. 192:789–799), matrilysin confers macrophages with their most potent MMP-dependent elastolytic system

    An Axisymmetric Gravitational Collapse Code

    Get PDF
    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship, and head-on black hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.Comment: 19 pages, 9 figure

    Quadrature domains and kernel function zipping

    Full text link
    It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Following this string of ideas leads to the discovery that the Bergman kernel can be zipped down to a strikingly small data set. It is also proved that the kernel functions associated to a quadrature domain must be algebraic.Comment: 13 pages, to appear in Arkiv for matemati

    Complementary Patents and Market Structure

    Get PDF
    Many high technology goods are based on standards that require several essential patents owned by different IP holders. This gives rise to a complements and a double mark-up problem. We compare the welfare effects of two different business strategies dealing with these problems. Vertical integration of an IP holder and a downstream producer solves the double mark-up problem between these firms. Nevertheless, it may raise royalty rates and reduce output as compared to non-integration. Horizontal integration of IP holders solves the complements problem but not the double mark-up problem. Vertical integration discourages entry and reduces innovation incentives, while horizontal integration always benefits from entry and innovatio

    Brief for Petitioners

    Get PDF
    Petitioners Brief written by ACLU and Public Patent Foundation in support of petitioners in AMP v. Myriad Genetics (Supreme Court Case Docket No. 12-398)

    Petition for a Writ of Certiorari

    Get PDF
    Petition for a Writ of Certiorari submitted by petitioners Public Patent Foundation and American Civil Liberties Union (No. 11-725

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference
    • …
    corecore